Department of AI, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Korea.
Department of Computer Engineering, Myongji University, Yongin 17058, Gyeonggi-do, Korea.
Sensors (Basel). 2021 Jun 23;21(13):4294. doi: 10.3390/s21134294.
As network attacks are constantly and dramatically evolving, demonstrating new patterns, intelligent Network Intrusion Detection Systems (NIDS), using deep-learning techniques, have been actively studied to tackle these problems. Recently, various autoencoders have been used for NIDS in order to accurately and promptly detect unknown types of attacks (i.e., zero-day attacks) and also alleviate the burden of the laborious labeling task. Although the autoencoders are effective in detecting unknown types of attacks, it takes tremendous time and effort to find the optimal model architecture and hyperparameter settings of the autoencoders that result in the best detection performance. This can be an obstacle that hinders practical applications of autoencoder-based NIDS. To address this challenge, we rigorously study autoencoders using the benchmark datasets, NSL-KDD, IoTID20, and N-BaIoT. We evaluate multiple combinations of different model structures and latent sizes, using a simple autoencoder model. The results indicate that the latent size of an autoencoder model can have a significant impact on the IDS performance.
随着网络攻击不断变化和急剧演变,展示出新的模式,使用深度学习技术的智能网络入侵检测系统 (NIDS) 已被积极研究以解决这些问题。最近,为了准确和及时地检测未知类型的攻击(即零日攻击),并减轻繁重的标记任务的负担,各种自动编码器已被用于 NIDS。尽管自动编码器在检测未知类型的攻击方面非常有效,但找到导致最佳检测性能的自动编码器的最佳模型架构和超参数设置需要花费大量的时间和精力。这可能是阻碍基于自动编码器的 NIDS 实际应用的一个障碍。为了解决这个挑战,我们使用基准数据集 NSL-KDD、IoTID20 和 N-BaIoT 对自动编码器进行了严格的研究。我们使用简单的自动编码器模型评估了不同模型结构和潜在大小的多种组合。结果表明,自动编码器模型的潜在大小对 IDS 性能有重大影响。