Suppr超能文献

比较针对有和无抑郁的成年初级保健患者减少不健康饮酒的简短干预措施的效果:基于增强逆概率加权的机器学习方法。

Comparing the effectiveness of a brief intervention to reduce unhealthy alcohol use among adult primary care patients with and without depression: A machine learning approach with augmented inverse probability weighting.

机构信息

Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA 94612, USA.

Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA 94612, USA.

出版信息

Drug Alcohol Depend. 2022 Oct 1;239:109607. doi: 10.1016/j.drugalcdep.2022.109607. Epub 2022 Aug 27.

Abstract

BACKGROUND

The combination of unhealthy alcohol use and depression is associated with adverse outcomes including higher rates of alcohol use disorder and poorer depression course. Therefore, addressing alcohol use among individuals with depression may have a substantial public health impact. We compared the effectiveness of a brief intervention (BI) for unhealthy alcohol use among patients with and without depression.

METHOD

This observational study included 312,056 adult primary care patients at Kaiser Permanente Northern California who screened positive for unhealthy drinking between 2014 and 2017. Approximately half (48%) received a BI for alcohol use and 9% had depression. We examined 12-month changes in heavy drinking days in the previous three months, drinking days per week, drinks per drinking day, and drinks per week. Machine learning was used to estimate BI propensity, follow-up participation, and alcohol outcomes for an augmented inverse probability weighting (AIPW) estimator of the average treatment (BI) effect. This approach does not depend on the strong parametric assumptions of traditional logistic regression, making it more robust to model misspecification.

RESULTS

BI had a significant effect on each alcohol use outcome in the non-depressed subgroup (-0.41 to -0.05, all ps < .003), but not in the depressed subgroup (-0.33 to -0.01, all ps > .28). However, differences between subgroups were nonsignificant (0.00 to 0.11, all ps > .44).

CONCLUSION

On average, BI is an effective approach to reducing unhealthy drinking, but more research is necessary to understand its impact on patients with depression. AIPW with machine learning provides a robust method for comparing intervention effectiveness across subgroups.

摘要

背景

不健康的饮酒行为和抑郁的结合与不良后果相关,包括更高的酒精使用障碍发生率和更差的抑郁病程。因此,解决抑郁患者的饮酒问题可能会产生重大的公共卫生影响。我们比较了对有和没有抑郁的患者进行简短干预(BI)治疗不健康饮酒的效果。

方法

本观察性研究纳入了 2014 年至 2017 年间 Kaiser Permanente 北加利福尼亚分校筛查出有不健康饮酒行为的 312056 名成年初级保健患者。大约一半(48%)的患者接受了酒精使用 BI,9%的患者有抑郁。我们检查了在接下来的 12 个月中,过去三个月中重度饮酒天数、每周饮酒天数、每天饮酒量和每周饮酒量的变化。机器学习用于估计 BI 倾向、随访参与度以及用于平均治疗(BI)效果的增强逆概率加权(AIPW)估计量的酒精结果。这种方法不依赖于传统逻辑回归的强参数假设,因此对模型的错误指定更稳健。

结果

BI 在非抑郁亚组的每个饮酒结果上都有显著效果(-0.41 至-0.05,所有 p 值均<0.003),但在抑郁亚组中没有效果(-0.33 至-0.01,所有 p 值均>0.28)。然而,亚组之间的差异无统计学意义(0.00 至 0.11,所有 p 值均>0.44)。

结论

平均而言,BI 是一种减少不健康饮酒的有效方法,但需要更多的研究来了解其对抑郁患者的影响。机器学习增强逆概率加权提供了一种稳健的方法,可用于比较亚组干预效果。

相似文献

9
Rates and Impact of Adherence to Recommended Care for Unhealthy Alcohol Use.不健康饮酒行为的遵医率及其影响因素。
J Gen Intern Med. 2019 Feb;34(2):256-263. doi: 10.1007/s11606-018-4749-3. Epub 2018 Nov 27.

引用本文的文献

1
Machine learning in causal inference for epidemiology.流行病学中的因果推理中的机器学习。
Eur J Epidemiol. 2024 Oct;39(10):1097-1108. doi: 10.1007/s10654-024-01173-x. Epub 2024 Nov 13.

本文引用的文献

2
Augmented Inverse Probability Weighting and the Double Robustness Property.增强逆概率加权法与双重稳健性特性。
Med Decis Making. 2022 Feb;42(2):156-167. doi: 10.1177/0272989X211027181. Epub 2021 Jul 6.
6
Motivation and cognitive control in depression.抑郁中的动机和认知控制。
Neurosci Biobehav Rev. 2019 Jul;102:371-381. doi: 10.1016/j.neubiorev.2019.04.011. Epub 2019 May 27.
9
Effectiveness of brief alcohol interventions in primary care populations.简短酒精干预措施在初级保健人群中的有效性。
Cochrane Database Syst Rev. 2018 Feb 24;2(2):CD004148. doi: 10.1002/14651858.CD004148.pub4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验