Darmstadt University of Technology, Karolinenplatz 5, 64289 Darmstadt, Germany.
Darmstadt University of Technology, Karolinenplatz 5, 64289 Darmstadt, Germany.
Med Image Anal. 2022 Nov;82:102596. doi: 10.1016/j.media.2022.102596. Epub 2022 Aug 24.
Automatic segmentation of ground glass opacities and consolidations in chest computer tomography (CT) scans can potentially ease the burden of radiologists during times of high resource utilisation. However, deep learning models are not trusted in the clinical routine due to failing silently on out-of-distribution (OOD) data. We propose a lightweight OOD detection method that leverages the Mahalanobis distance in the feature space and seamlessly integrates into state-of-the-art segmentation pipelines. The simple approach can even augment pre-trained models with clinically relevant uncertainty quantification. We validate our method across four chest CT distribution shifts and two magnetic resonance imaging applications, namely segmentation of the hippocampus and the prostate. Our results show that the proposed method effectively detects far- and near-OOD samples across all explored scenarios.
自动分割胸部计算机断层扫描(CT)中的磨玻璃影和实变可以在资源高利用时期减轻放射科医生的负担。然而,由于深度学习模型在分布外(OOD)数据上会静默失效,因此它们在临床常规中并不被信任。我们提出了一种轻量级的 OOD 检测方法,该方法利用特征空间中的马氏距离,并无缝集成到最先进的分割管道中。这种简单的方法甚至可以为临床相关不确定性量化的预训练模型提供增强。我们在四个胸部 CT 分布转移和两个磁共振成像应用中验证了我们的方法,即海马体和前列腺的分割。我们的结果表明,所提出的方法可以有效地检测到所有探索场景中的远和近 OOD 样本。