Suppr超能文献

使用统计过程控制的分布外检测与放射学数据监测

Out-of-Distribution Detection and Radiological Data Monitoring Using Statistical Process Control.

作者信息

Zamzmi Ghada, Venkatesh Kesavan, Nelson Brandon, Prathapan Smriti, Yi Paul, Sahiner Berkman, Delfino Jana G

机构信息

Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.

Department of Biomedical Engineering, Johns Hopkins University, 400 N. Charles St., Baltimore, MD, 21218, USA.

出版信息

J Imaging Inform Med. 2025 Apr;38(2):997-1015. doi: 10.1007/s10278-024-01212-9. Epub 2024 Sep 16.

Abstract

Machine learning (ML) models often fail with data that deviates from their training distribution. This is a significant concern for ML-enabled devices as data drift may lead to unexpected performance. This work introduces a new framework for out of distribution (OOD) detection and data drift monitoring that combines ML and geometric methods with statistical process control (SPC). We investigated different design choices, including methods for extracting feature representations and drift quantification for OOD detection in individual images and as an approach for input data monitoring. We evaluated the framework for both identifying OOD images and demonstrating the ability to detect shifts in data streams over time. We demonstrated a proof-of-concept via the following tasks: 1) differentiating axial vs. non-axial CT images, 2) differentiating CXR vs. other radiographic imaging modalities, and 3) differentiating adult CXR vs. pediatric CXR. For the identification of individual OOD images, our framework achieved high sensitivity in detecting OOD inputs: 0.980 in CT, 0.984 in CXR, and 0.854 in pediatric CXR. Our framework is also adept at monitoring data streams and identifying the time a drift occurred. In our simulations tracking drift over time, it effectively detected a shift from CXR to non-CXR instantly, a transition from axial to non-axial CT within few days, and a drift from adult to pediatric CXRs within a day-all while maintaining a low false positive rate. Through additional experiments, we demonstrate the framework is modality-agnostic and independent from the underlying model structure, making it highly customizable for specific applications and broadly applicable across different imaging modalities and deployed ML models.

摘要

机器学习(ML)模型在处理偏离其训练分布的数据时常常失效。对于启用ML的设备而言,这是一个重大问题,因为数据漂移可能导致意外的性能表现。这项工作引入了一个用于分布外(OOD)检测和数据漂移监测的新框架,该框架将ML和几何方法与统计过程控制(SPC)相结合。我们研究了不同的设计选择,包括用于提取特征表示的方法以及在单个图像中进行OOD检测的漂移量化方法,还将其作为一种输入数据监测方法。我们评估了该框架在识别OOD图像以及展示随时间检测数据流变化能力方面的表现。我们通过以下任务展示了概念验证:1)区分轴向CT图像与非轴向CT图像,2)区分胸部X光(CXR)图像与其他放射成像模态,3)区分成人CXR图像与儿科CXR图像。对于单个OOD图像的识别,我们的框架在检测OOD输入方面实现了高灵敏度:在CT图像中为0.980,在CXR图像中为0.984,在儿科CXR图像中为0.854。我们的框架还擅长监测数据流并识别漂移发生的时间。在我们随时间跟踪漂移的模拟中,它能够立即有效地检测到从CXR到非CXR的变化、在几天内从轴向CT到非轴向CT的转变以及在一天内从成人CXR到儿科CXR的漂移,同时保持较低的误报率。通过额外的实验,我们证明该框架与模态无关,并且独立于基础模型结构,使其能够高度定制以用于特定应用,并广泛适用于不同的成像模态和已部署的ML模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e56/11950585/8181b04f1a8b/10278_2024_1212_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验