Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2941-2944. doi: 10.1109/EMBC48229.2022.9871576.
Rapid eye movement (REM) sleep behavior disorder (RBD) is parasomnia and a prodromal manifestation of Parkinson's disease. The current diagnostic method relies on manual scoring of polysomnograms (PSGs), a procedure that is time and effort intensive, subject to interscorer variability, and requires high level of expertise. Here, we present an automatic and interpretable diagnostic tool for RBD that analyzes PSGs using end-to-end deep neural networks. We optimized hierarchical attention networks in a 5-fold cross validation directly to classify RBD from PSG data recorded in 143 participants with RBD and 147 age-and sex-matched controls. An ensemble model using logistic regression was implemented to fuse decisions from networks trained in various signal combinations. We interpreted the networks using gradient SHAP that attribute relevance of input signals to model decisions. The ensemble model achieved a sensitivity of 91.4 % and a specificity of 86.3 %. Interpretation showed that electroencephalography (EEG) and leg electromyography (EMG) exhibited most patterns with high relevance. This study validates a robust diagnostic tool for RBD and proposes an interpretable and fully automatic framework for end-to-end modeling of other sleep disorders from PSG data. Clinical relevance- This study presents a novel diagnostic tool for RBD that considers neurophysiologic biomarkers in multiple modalities.
快速眼动(REM)睡眠行为障碍(RBD)是一种睡眠障碍,也是帕金森病的前驱表现。目前的诊断方法依赖于多导睡眠图(PSG)的手动评分,这是一个既耗时又费力的过程,受到评分者间变异性的影响,并且需要高度的专业知识。在这里,我们提出了一种使用端到端深度神经网络分析 PSG 的自动且可解释的 RBD 诊断工具。我们在 5 折交叉验证中优化了层次注意力网络,直接从 143 名 RBD 患者和 147 名年龄和性别匹配的对照者的 PSG 数据中分类 RBD。使用逻辑回归的集成模型来融合在各种信号组合中训练的网络的决策。我们使用梯度 SHAP 对网络进行解释,将输入信号的相关性归因于模型决策。该集成模型的灵敏度为 91.4%,特异性为 86.3%。解释表明,脑电图(EEG)和腿部肌电图(EMG)表现出最高相关性的模式。这项研究验证了一种用于 RBD 的强大诊断工具,并提出了一种可解释的和全自动的框架,用于从 PSG 数据端到端建模其他睡眠障碍。临床相关性-本研究提出了一种新的 RBD 诊断工具,该工具考虑了多种模式下的神经生理生物标志物。