文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

医生和基于人工智能的症状检查器诊断准确性比较。

Comparison of physician and artificial intelligence-based symptom checker diagnostic accuracy.

机构信息

Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.

Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.

出版信息

Rheumatol Int. 2022 Dec;42(12):2167-2176. doi: 10.1007/s00296-022-05202-4. Epub 2022 Sep 10.


DOI:10.1007/s00296-022-05202-4
PMID:36087130
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9548469/
Abstract

Symptom checkers are increasingly used to assess new symptoms and navigate the health care system. The aim of this study was to compare the accuracy of an artificial intelligence (AI)-based symptom checker (Ada) and physicians regarding the presence/absence of an inflammatory rheumatic disease (IRD). In this survey study, German-speaking physicians with prior rheumatology working experience were asked to determine IRD presence/absence and suggest diagnoses for 20 different real-world patient vignettes, which included only basic health and symptom-related medical history. IRD detection rate and suggested diagnoses of participants and Ada were compared to the gold standard, the final rheumatologists' diagnosis, reported on the discharge summary report. A total of 132 vignettes were completed by 33 physicians (mean rheumatology working experience 8.8 (SD 7.1) years). Ada's diagnostic accuracy (IRD) was significantly higher compared to physicians (70 vs 54%, p = 0.002) according to top diagnosis. Ada listed the correct diagnosis more often compared to physicians (54 vs 32%, p < 0.001) as top diagnosis as well as among the top 3 diagnoses (59 vs 42%, p < 0.001). Work experience was not related to suggesting the correct diagnosis or IRD status. Confined to basic health and symptom-related medical history, the diagnostic accuracy of physicians was lower compared to an AI-based symptom checker. These results highlight the potential of using symptom checkers early during the patient journey and importance of access to complete and sufficient patient information to establish a correct diagnosis.

摘要

症状检查器越来越多地被用于评估新出现的症状并在医疗保健系统中进行导航。本研究的目的是比较基于人工智能(AI)的症状检查器(Ada)和医生在评估炎症性风湿病(IRD)的存在/缺失方面的准确性。在这项调查研究中,要求具有先前风湿病工作经验的德语医生确定 IRD 的存在/缺失,并为 20 个不同的真实患者案例提出诊断,这些案例仅包含基本的健康和与症状相关的病史。将参与者和 Ada 的 IRD 检测率和建议的诊断与金标准(最终风湿病医生的诊断)进行比较,金标准是在出院总结报告中报告的。共有 33 名医生完成了 132 个案例(平均风湿病工作经验为 8.8(SD 7.1)年)。Ada 的诊断准确性(IRD)明显高于医生(70%对 54%,p=0.002),根据主要诊断。Ada 作为主要诊断和前 3 个诊断(59%对 42%,p<0.001)比医生更常列出正确的诊断(54%对 32%,p<0.001)。工作经验与提出正确诊断或 IRD 状态无关。仅考虑基本健康和与症状相关的病史,医生的诊断准确性低于基于 AI 的症状检查器。这些结果强调了在患者就诊早期使用症状检查器的潜力,以及获得完整和充分的患者信息以建立正确诊断的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e508/9548469/1da56102f0ff/296_2022_5202_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e508/9548469/c118491c6c74/296_2022_5202_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e508/9548469/64f36bfb454e/296_2022_5202_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e508/9548469/03a1f3442845/296_2022_5202_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e508/9548469/1da56102f0ff/296_2022_5202_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e508/9548469/c118491c6c74/296_2022_5202_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e508/9548469/64f36bfb454e/296_2022_5202_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e508/9548469/03a1f3442845/296_2022_5202_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e508/9548469/1da56102f0ff/296_2022_5202_Fig4_HTML.jpg

相似文献

[1]
Comparison of physician and artificial intelligence-based symptom checker diagnostic accuracy.

Rheumatol Int. 2022-12

[2]
Diagnostic Accuracy of a Mobile AI-Based Symptom Checker and a Web-Based Self-Referral Tool in Rheumatology: Multicenter Randomized Controlled Trial.

J Med Internet Res. 2024-7-23

[3]
Diagnostic accuracy of a large language model in rheumatology: comparison of physician and ChatGPT-4.

Rheumatol Int. 2024-2

[4]
Accuracy, patient-perceived usability, and acceptance of two symptom checkers (Ada and Rheport) in rheumatology: interim results from a randomized controlled crossover trial.

Arthritis Res Ther. 2021-4-13

[5]
Patient Perspectives on the Usefulness of an Artificial Intelligence-Assisted Symptom Checker: Cross-Sectional Survey Study.

J Med Internet Res. 2020-1-30

[6]
Evaluation of Diagnostic and Triage Accuracy and Usability of a Symptom Checker in an Emergency Department: Observational Study.

JMIR Mhealth Uhealth. 2022-9-19

[7]
Longitudinal Changes in Diagnostic Accuracy of a Differential Diagnosis List Developed by an AI-Based Symptom Checker: Retrospective Observational Study.

JMIR Form Res. 2024-5-17

[8]
Evaluating the Diagnostic Performance of Symptom Checkers: Clinical Vignette Study.

JMIR AI. 2024-4-29

[9]
Patient's Perception of Digital Symptom Assessment Technologies in Rheumatology: Results From a Multicentre Study.

Front Public Health. 2022

[10]
Comparison of Diagnostic and Triage Accuracy of Ada Health and WebMD Symptom Checkers, ChatGPT, and Physicians for Patients in an Emergency Department: Clinical Data Analysis Study.

JMIR Mhealth Uhealth. 2023-10-3

引用本文的文献

[1]
Medical Expert Knowledge Meets AI to Enhance Symptom Checker Performance for Rare Disease Identification in Fabry Disease: Mixed Methods Study.

JMIR AI. 2025-8-28

[2]
Advancing Musculoskeletal Care Using AI and Digital Health Applications: A Review of Commercial Solutions.

HSS J. 2025-5-30

[3]
Accuracy of Large Language Models When Answering Clinical Research Questions: Systematic Review and Network Meta-Analysis.

J Med Internet Res. 2025-4-30

[4]
Artificial intelligence in rheumatology: status quo and quo vadis-results of a national survey among German rheumatologists.

Ther Adv Musculoskelet Dis. 2024-11-14

[5]
Rheumatology in the digital health era: status quo and quo vadis?

Nat Rev Rheumatol. 2024-12

[6]
Advancing rheumatology with natural language processing: insights and prospects from a systematic review.

Rheumatol Adv Pract. 2024-9-19

[7]
Concordance of data collected by an app for medical history taking and in-person interviews from patients in primary care.

JAMIA Open. 2024-10-7

[8]
Comparison of Two Symptom Checkers (Ada and Symptoma) in the Emergency Department: Randomized, Crossover, Head-to-Head, Double-Blinded Study.

J Med Internet Res. 2024-8-20

[9]
Evaluation of AI-Driven LabTest Checker for Diagnostic Accuracy and Safety: Prospective Cohort Study.

JMIR Med Inform. 2024-8-14

[10]
[Rheumatological care in Germany : Memorandum of the German Society for Rheumatology and Clinical Immunology 2024].

Z Rheumatol. 2024-8

本文引用的文献

[1]
?-A Digital Diagnostic Decision Support Tool for Individuals Suspecting Rheumatic Diseases: A Multicenter Pilot Validation Study.

Front Med (Lausanne). 2022-4-25

[2]
Patient's Perception of Digital Symptom Assessment Technologies in Rheumatology: Results From a Multicentre Study.

Front Public Health. 2022

[3]
[Digital diagnostic support in rheumatology].

Z Rheumatol. 2021-12

[4]
Accuracy and usability of a diagnostic decision support system in the diagnosis of three representative rheumatic diseases: a randomized controlled trial among medical students.

Arthritis Res Ther. 2021-9-6

[5]
Accuracy, patient-perceived usability, and acceptance of two symptom checkers (Ada and Rheport) in rheumatology: interim results from a randomized controlled crossover trial.

Arthritis Res Ther. 2021-4-13

[6]
How accurate are digital symptom assessment apps for suggesting conditions and urgency advice? A clinical vignettes comparison to GPs.

BMJ Open. 2020-12-16

[7]
Comparison of an online self-referral tool with a physician-based referral strategy for early recognition of patients with a high probability of axial spa.

Semin Arthritis Rheum. 2020-10

[8]
Toward Earlier Diagnosis Using Combined eHealth Tools in Rheumatology: The Joint Pain Assessment Scoring Tool (JPAST) Project.

JMIR Mhealth Uhealth. 2020-5-15

[9]
Patient Perspectives on the Usefulness of an Artificial Intelligence-Assisted Symptom Checker: Cross-Sectional Survey Study.

J Med Internet Res. 2020-1-30

[10]
Accuracy of a Chatbot (Ada) in the Diagnosis of Mental Disorders: Comparative Case Study With Lay and Expert Users.

JMIR Form Res. 2019-10-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索