Suppr超能文献

多组学研究策略在缺血性脑卒中中的应用:多维视角。

Multi-omics research strategies in ischemic stroke: A multidimensional perspective.

机构信息

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.

School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.

出版信息

Ageing Res Rev. 2022 Nov;81:101730. doi: 10.1016/j.arr.2022.101730. Epub 2022 Sep 7.

Abstract

Ischemic stroke (IS) is a multifactorial and heterogeneous neurological disorder with high rate of death and long-term impairment. Despite years of studies, there are still no stroke biomarkers for clinical practice, and the molecular mechanisms of stroke remain largely unclear. The high-throughput omics approach provides new avenues for discovering biomarkers of IS and explaining its pathological mechanisms. However, single-omics approaches only provide a limited understanding of the biological pathways of diseases. The integration of multiple omics data means the simultaneous analysis of thousands of genes, RNAs, proteins and metabolites, revealing networks of interactions between multiple molecular levels. Integrated analysis of multi-omics approaches will provide helpful insights into stroke pathogenesis, therapeutic target identification and biomarker discovery. Here, we consider advances in genomics, transcriptomics, proteomics and metabolomics and outline their use in discovering the biomarkers and pathological mechanisms of IS. We then delineate strategies for achieving integration at the multi-omics level and discuss how integrative omics and systems biology can contribute to our understanding and management of IS.

摘要

缺血性脑卒中(IS)是一种多因素、异质性的神经疾病,具有较高的死亡率和长期致残率。尽管经过多年的研究,目前仍然没有用于临床实践的脑卒中生物标志物,其发病机制在很大程度上仍不清楚。高通量组学方法为发现 IS 的生物标志物和解释其病理机制提供了新途径。然而,单一组学方法只能提供对疾病生物学途径的有限理解。多种组学数据的整合意味着同时分析数千个基因、RNA、蛋白质和代谢物,揭示多个分子水平之间的相互作用网络。对多组学方法的综合分析将有助于深入了解脑卒中的发病机制、治疗靶点的鉴定和生物标志物的发现。在这里,我们考虑了基因组学、转录组学、蛋白质组学和代谢组学的进展,并概述了它们在发现 IS 的生物标志物和病理机制中的应用。然后,我们描述了在多组学水平上实现整合的策略,并讨论了整合组学和系统生物学如何有助于我们理解和管理 IS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验