Department of Pharmaceutical Technology and Chemistry, School of Pharmacy & Nutrition, University of Navarra; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
Laboratory of Experimental Oncology, and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands.
J Control Release. 2022 Nov;351:22-36. doi: 10.1016/j.jconrel.2022.09.002. Epub 2022 Sep 19.
Nanoparticles (Nps) have revolutionized the landscape of many treatments, by modifying not only pharmacokinetic properties of the encapsulated agent, but also providing a significant protection of the drug from non-desired interactions, and reducing side-effects of the enclosed therapeutic, enabling co-encapsulation of possibly synergistic compounds or activities, allowing a controlled release of content and improving the therapeutic effect. Nevertheless, in systemic circulation, Nps suffer a rapid removal by opsonisation and the action of Mononuclear phagocyte system (MPS). To overcome this problem, different polymers, in particular Polyethyleneglycol (PEG), have been used to cover the surface of these nanocarriers forming a hydrophilic layer that allows the delay of the removal. These advantages contrast with some drawbacks such as the difficulty to interact with cell membranes and the development of immunological reactions, conforming the known, "PEG dilemma". To address and minimize this phenomenon, different strategies have been applied. Therefore, this review aims to summarize the state of the art of Pegylation strategies, comment in depth on the principal characteristics of PEG and describe the main alternatives, which are the use of cleavable PEG, addition of different polymers or even use other derivatives of cell membranes to camouflage Nps.
纳米粒子(Nps)通过不仅改变包裹剂的药代动力学特性,而且为药物提供免受非预期相互作用的显著保护,并减少所包含治疗剂的副作用,使可能协同作用的化合物或活性共包封,允许内容物的控制释放并提高治疗效果,从而彻底改变了许多治疗方法的格局。然而,在全身循环中,Nps 会通过调理作用和单核吞噬细胞系统(MPS)的作用而迅速被清除。为了克服这个问题,已经使用了不同的聚合物,特别是聚乙二醇(PEG),来覆盖这些纳米载体的表面,形成亲水性层,从而允许延迟清除。这些优势与一些缺点形成对比,例如与细胞膜相互作用的困难和免疫反应的发展,构成了已知的“PEG 困境”。为了解决并最小化这种现象,已经应用了不同的策略。因此,本综述旨在总结 Pegylation 策略的最新进展,深入讨论 PEG 的主要特性,并描述主要的替代方案,即使用可切割的 PEG、添加不同的聚合物甚至使用细胞膜的其他衍生物来伪装 Nps。