Institute for Theoretical Biology, Humboldt University Berlin, Berlin, Germany.
Science of Intelligence Excellence Cluster, Technical University Berlin, Berlin, Germany.
PLoS Comput Biol. 2024 May 3;20(5):e1012087. doi: 10.1371/journal.pcbi.1012087. eCollection 2024 May.
Collective dynamics emerge from individual-level decisions, yet we still poorly understand the link between individual-level decision-making processes and collective outcomes in realistic physical systems. Using collective foraging to study the key trade-off between personal and social information use, we present a mechanistic, spatially-explicit agent-based model that combines individual-level evidence accumulation of personal and (visual) social cues with particle-based movement. Under idealized conditions without physical constraints, our mechanistic framework reproduces findings from established probabilistic models, but explains how individual-level decision processes generate collective outcomes in a bottom-up way. In clustered environments, groups performed best if agents reacted strongly to social information, while in uniform environments, individualistic search was most beneficial. Incorporating different real-world physical and perceptual constraints profoundly shaped collective performance, and could even buffer maladaptive herding by facilitating self-organized exploration. Our study uncovers the mechanisms linking individual cognition to collective outcomes in human and animal foraging and paves the way for decentralized robotic applications.
集体动态是从个体层面的决策中涌现出来的,但我们仍然不太了解个体层面的决策过程与现实物理系统中的集体结果之间的联系。我们使用集体觅食来研究个人信息和社会信息使用之间的关键权衡,提出了一个机械的、空间明确的基于代理的模型,该模型将个人层面的个人和(视觉)社会线索的证据积累与基于粒子的运动相结合。在没有物理约束的理想化条件下,我们的机械框架再现了已建立的概率模型的发现,但解释了个体层面的决策过程如何以自下而上的方式产生集体结果。在聚类环境中,如果个体对社会信息反应强烈,那么群体的表现最好,而在均匀环境中,个体搜索则最有益。结合不同的现实世界的物理和感知限制,深刻地塑造了集体表现,甚至可以通过促进自组织探索来缓冲适应性的羊群行为。我们的研究揭示了将个体认知与人类和动物觅食中的集体结果联系起来的机制,并为分散的机器人应用铺平了道路。