Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China.
PLoS Comput Biol. 2022 Sep 12;18(9):e1010511. doi: 10.1371/journal.pcbi.1010511. eCollection 2022 Sep.
Prediction of therapeutic peptide is a significant step for the discovery of promising therapeutic drugs. Most of the existing studies have focused on the mono-functional therapeutic peptide prediction. However, the number of multi-functional therapeutic peptides (MFTP) is growing rapidly, which requires new computational schemes to be proposed to facilitate MFTP discovery. In this study, based on multi-head self-attention mechanism and class weight optimization algorithm, we propose a novel model called PrMFTP for MFTP prediction. PrMFTP exploits multi-scale convolutional neural network, bi-directional long short-term memory, and multi-head self-attention mechanisms to fully extract and learn informative features of peptide sequence to predict MFTP. In addition, we design a class weight optimization scheme to address the problem of label imbalanced data. Comprehensive evaluation demonstrate that PrMFTP is superior to other state-of-the-art computational methods for predicting MFTP. We provide a user-friendly web server of PrMFTP, which is available at http://bioinfo.ahu.edu.cn/PrMFTP.
治疗性肽的预测是发现有前途的治疗药物的重要步骤。大多数现有研究都集中在单功能治疗性肽的预测上。然而,多功能治疗性肽 (MFTP) 的数量正在迅速增长,这需要提出新的计算方案来促进 MFTP 的发现。在这项研究中,我们基于多头自注意力机制和类权重优化算法,提出了一种名为 PrMFTP 的新模型,用于 MFTP 的预测。PrMFTP 利用多尺度卷积神经网络、双向长短期记忆和多头自注意力机制,充分提取和学习肽序列的信息特征,以预测 MFTP。此外,我们设计了一种类权重优化方案来解决标签不平衡数据的问题。综合评估表明,PrMFTP 在预测 MFTP 方面优于其他最先进的计算方法。我们提供了 PrMFTP 的用户友好型网络服务器,网址为 http://bioinfo.ahu.edu.cn/PrMFTP。