Suppr超能文献

实时成像技术揭示了体外转录的输入特异性即刻早期基因动力学。

Real-time imaging of transcription ex vivo reveals input-specific immediate early gene dynamics.

机构信息

Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461.

Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461.

出版信息

Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2123373119. doi: 10.1073/pnas.2123373119. Epub 2022 Sep 12.

Abstract

The ability of neurons to process and store salient environmental features underlies information processing in the brain. Long-term information storage requires synaptic plasticity and regulation of gene expression. While distinct patterns of activity have been linked to synaptic plasticity, their impact on immediate early gene (IEG) expression remains poorly understood. The activity regulated cytoskeleton associated () gene has received wide attention as an IEG critical for long-term synaptic plasticity and memory. Yet, to date, the transcriptional dynamics of in response to compartment and input-specific activity is unclear. By developing a knock-in mouse to fluorescently tag alleles, we studied real-time transcription dynamics after stimulation of dentate granule cells (GCs) in acute hippocampal slices. To our surprise, we found that transcription displayed distinct temporal kinetics depending on the activation of excitatory inputs that convey functionally distinct information, i.e., medial and lateral perforant paths (MPP and LPP, respectively). Moreover, the transcriptional dynamics of after synaptic stimulation was similar to direct activation of GCs, although the contribution of ionotropic glutamate receptors, L-type voltage-gated calcium channel, and the endoplasmic reticulum (ER) differed. Specifically, we observed an ER-mediated synapse-to-nucleus signal that supported elevations in nuclear calcium and, thereby, rapid induction of transcription following MPP stimulation. By delving into the complex excitation-transcription coupling for , our findings highlight how different synaptic inputs may encode information by modulating transcription dynamics of an IEG linked to learning and memory.

摘要

神经元处理和存储环境特征的能力是大脑信息处理的基础。长期信息存储需要突触可塑性和基因表达的调节。虽然不同的活动模式与突触可塑性有关,但它们对即时早期基因(IEG)表达的影响仍知之甚少。活性调节细胞骨架相关(Arc)基因作为长时程突触可塑性和记忆的关键 IEG 受到了广泛关注。然而,迄今为止,Arc 基因在响应特定部位和特定输入的活性方面的转录动力学尚不清楚。通过开发一种荧光标记 Arc 基因等位基因的敲入小鼠,我们研究了急性海马切片中齿状回颗粒细胞(GCs)刺激后的实时转录动力学。令我们惊讶的是,我们发现 Arc 基因的转录显示出不同的时间动力学,这取决于传递功能不同信息的兴奋性输入的激活,即内侧和外侧穿通通路(MPP 和 LPP,分别)。此外,尽管离子型谷氨酸受体、L 型电压门控钙通道和内质网(ER)的贡献不同,但突触刺激后 Arc 基因的转录动力学与 GCs 的直接激活相似。具体来说,我们观察到 ER 介导的从突触到核的信号,支持核钙的升高,从而在 MPP 刺激后迅速诱导 Arc 基因的转录。通过深入研究 Arc 的复杂兴奋-转录偶联,我们的发现强调了不同的突触输入如何通过调节与学习和记忆相关的 IEG 的转录动力学来编码信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/9499544/e97b6142f46c/pnas.2123373119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验