Łempicka-Mirek Karolina, Król Mateusz, Sigurdsson Helgi, Wincukiewicz Adam, Morawiak Przemysław, Mazur Rafał, Muszyński Marcin, Piecek Wiktor, Kula Przemysław, Stefaniuk Tomasz, Kamińska Maria, De Marco Luisa, Lagoudakis Pavlos G, Ballarini Dario, Sanvitto Daniele, Szczytko Jacek, Piętka Barbara
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland.
Science Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland.
Sci Adv. 2022 Oct 7;8(40):eabq7533. doi: 10.1126/sciadv.abq7533. Epub 2022 Oct 5.
The field of spinoptronics is underpinned by good control over photonic spin-orbit coupling in devices that have strong optical nonlinearities. Such devices might hold the key to a new era of optoelectronics where momentum and polarization degrees of freedom of light are interwoven and interfaced with electronics. However, manipulating photons through electrical means is a daunting task given their charge neutrality. In this work, we present electrically tunable microcavity exciton-polariton resonances in a Rashba-Dresselhaus spin-orbit coupling field. We show that different spin-orbit coupling fields and the reduced cavity symmetry lead to tunable formation of the Berry curvature, the hallmark of quantum geometrical effects. For this, we have implemented an architecture of a photonic structure with a two-dimensional perovskite layer incorporated into a microcavity filled with nematic liquid crystal. Our work interfaces spinoptronic devices with electronics by combining electrical control over both the strong light-matter coupling conditions and artificial gauge fields.
自旋光电子学领域的基础是对具有强光学非线性的器件中的光子自旋 - 轨道耦合进行良好控制。此类器件可能是光电子学新时代的关键,在这个新时代,光的动量和偏振自由度相互交织并与电子学相结合。然而,鉴于光子的电荷中性,通过电学手段操纵光子是一项艰巨的任务。在这项工作中,我们展示了在Rashba - Dresselhaus自旋 - 轨道耦合场中电可调谐的微腔激子 - 极化激元共振。我们表明,不同的自旋 - 轨道耦合场和降低的腔对称性导致了Berry曲率的可调谐形成,这是量子几何效应的标志。为此,我们实现了一种光子结构架构,其中二维钙钛矿层被纳入充满向列型液晶的微腔中。我们的工作通过对强光 - 物质耦合条件和人工规范场进行电控制,将自旋光电器件与电子学相结合。