Suppr超能文献

持续时间计时的神经基础。

The neural bases for timing of durations.

作者信息

Tsao Albert, Yousefzadeh S Aryana, Meck Warren H, Moser May-Britt, Moser Edvard I

机构信息

Department of Biology, Stanford University, Stanford, CA, USA.

Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.

出版信息

Nat Rev Neurosci. 2022 Nov;23(11):646-665. doi: 10.1038/s41583-022-00623-3. Epub 2022 Sep 12.

Abstract

Durations are defined by a beginning and an end, and a major distinction is drawn between durations that start in the present and end in the future ('prospective timing') and durations that start in the past and end either in the past or the present ('retrospective timing'). Different psychological processes are thought to be engaged in each of these cases. The former is thought to engage a clock-like mechanism that accurately tracks the continuing passage of time, whereas the latter is thought to engage a reconstructive process that utilizes both temporal and non-temporal information from the memory of past events. We propose that, from a biological perspective, these two forms of duration estimation are supported by computational processes that are both reliant on population state dynamics but are nevertheless distinct. Prospective timing is effectively carried out in a single step where the ongoing dynamics of population activity directly serve as the computation of duration, whereas retrospective timing is carried out in two steps: the initial generation of population state dynamics through the process of event segmentation and the subsequent computation of duration utilizing the memory of those dynamics.

摘要

时间段由开始和结束来定义,并且在始于现在并终于未来的时间段(“前瞻性计时”)和始于过去并终于过去或现在的时间段(“回顾性计时”)之间存在重大区别。人们认为在每种情况下会涉及不同的心理过程。前者被认为涉及一种类似时钟的机制,能够精确追踪时间的持续流逝,而后者被认为涉及一种重构过程,该过程利用来自过去事件记忆中的时间和非时间信息。我们提出,从生物学角度来看,这两种形式的时长估计由计算过程支持,这两种计算过程都依赖于群体状态动态,但仍然是不同的。前瞻性计时在单个步骤中有效执行,其中群体活动的持续动态直接用作时长的计算,而回顾性计时分两个步骤执行:通过事件分割过程最初生成群体状态动态,以及随后利用对这些动态的记忆来计算时长。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验