IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany.
Institut für Genetik, Abteilung Zellteilung, Universität Bonn, Karlrobert-Kreiten-Str. 13, D-53115 Bonn, Germany.
Nucleic Acids Res. 2022 Sep 23;50(17):9966-9983. doi: 10.1093/nar/gkac752.
RNA editing processes are strikingly different in animals and plants. Up to thousands of specific cytidines are converted into uridines in plant chloroplasts and mitochondria whereas up to millions of adenosines are converted into inosines in animal nucleo-cytosolic RNAs. It is unknown whether these two different RNA editing machineries are mutually incompatible. RNA-binding pentatricopeptide repeat (PPR) proteins are the key factors of plant organelle cytidine-to-uridine RNA editing. The complete absence of PPR mediated editing of cytosolic RNAs might be due to a yet unknown barrier that prevents its activity in the cytosol. Here, we transferred two plant mitochondrial PPR-type editing factors into human cell lines to explore whether they could operate in the nucleo-cytosolic environment. PPR56 and PPR65 not only faithfully edited their native, co-transcribed targets but also different sets of off-targets in the human background transcriptome. More than 900 of such off-targets with editing efficiencies up to 91%, largely explained by known PPR-RNA binding properties, were identified for PPR56. Engineering two crucial amino acid positions in its PPR array led to predictable shifts in target recognition. We conclude that plant PPR editing factors can operate in the entirely different genetic environment of the human nucleo-cytosol and can be intentionally re-engineered towards new targets.
RNA 编辑过程在动物和植物中差异显著。在植物的叶绿体和线粒体中,多达数千个特定的胞嘧啶被转化为尿嘧啶,而在动物核细胞质的 RNA 中,多达数百万个腺苷被转化为肌苷。目前尚不清楚这两种不同的 RNA 编辑机制是否相互排斥。RNA 结合五肽重复(PPR)蛋白是植物细胞器胞嘧啶到尿嘧啶 RNA 编辑的关键因素。细胞质 RNA 中完全缺乏 PPR 介导的编辑可能是由于一个未知的障碍,阻止了其在细胞质中的活性。在这里,我们将两种植物线粒体 PPR 型编辑因子转入人类细胞系,以探讨它们是否能在核细胞质环境中发挥作用。PPR56 和 PPR65 不仅能忠实编辑其天然的、共转录的靶标,而且还能编辑人类背景转录组中的不同靶标。对于 PPR56,我们鉴定了超过 900 个具有高达 91%编辑效率的此类靶标,这在很大程度上可以用已知的 PPR-RNA 结合特性来解释。在其 PPR 序列中设计两个关键的氨基酸位置,导致靶标识别的可预测变化。我们的结论是,植物 PPR 编辑因子可以在人类核细胞质完全不同的遗传环境中发挥作用,并且可以被有意地重新设计用于新的靶标。