Bonifazi Gianluca, Breve Bernardo, Cirillo Stefano, Corradini Enrico, Virgili Luca
DII, Polytechnic University of Marche, Italy.
DI, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
Inf Process Manag. 2022 Nov;59(6):103095. doi: 10.1016/j.ipm.2022.103095. Epub 2022 Sep 12.
Modeling discussions on social networks is a challenging task, especially if we consider sensitive topics, such as politics or healthcare. However, the knowledge hidden in these debates helps to investigate trends and opinions and to identify the cohesion of users when they deal with a specific topic. To this end, we propose a general multilayer network approach to investigate discussions on a social network. In order to prove the validity of our model, we apply it on a Twitter dataset containing tweets concerning opinions on COVID-19 vaccines. We extract a set of relevant hashtags (i.e., gold-standard hashtags) for each line of thought (i.e., pro-vaxxer, neutral, and anti-vaxxer). Then, thanks to our multilayer network model, we figure out that the anti-vaxxers tend to have ego networks denser (+14.39%) and more cohesive (+64.2%) than the ones of pro-vaxxer, which leads to a higher number of interactions among anti-vaxxers than pro-vaxxers (+393.89%). Finally, we report a comparison between our approach and one based on single networks analysis. We prove the effectiveness of our model to extract influencers having ego networks with more nodes (+40.46%), edges (+39.36%), and interactions with their neighbors (+28.56%) with respect to the other approach. As a result, these influential users are much more important to analyze and can provide more valuable information.
对社交网络上的讨论进行建模是一项具有挑战性的任务,尤其是当我们考虑敏感话题时,比如政治或医疗保健。然而,隐藏在这些辩论中的知识有助于调查趋势和观点,并在用户讨论特定话题时识别他们的凝聚力。为此,我们提出了一种通用的多层网络方法来研究社交网络上的讨论。为了证明我们模型的有效性,我们将其应用于一个Twitter数据集,该数据集包含有关COVID-19疫苗观点的推文。我们为每一种思路(即支持疫苗接种者、中立者和反对疫苗接种者)提取了一组相关的主题标签(即黄金标准主题标签)。然后,借助我们的多层网络模型,我们发现反对疫苗接种者的自我网络往往比支持疫苗接种者的自我网络更密集(+14.39%)、更具凝聚力(+64.2%),这导致反对疫苗接种者之间的互动次数比支持疫苗接种者更多(+393.89%)。最后,我们报告了我们的方法与基于单网络分析的方法之间的比较。我们证明了我们的模型相对于另一种方法在提取具有更多节点(+40.46%)、边(+39.36%)以及与邻居互动(+28.56%)的自我网络的有影响力用户方面的有效性。因此,这些有影响力的用户对于分析更为重要,并且可以提供更有价值的信息。