Suppr超能文献

利用生物缓冲液通过脂质纳米粒高效传递信使 RNA。

Leveraging Biological Buffers for Efficient Messenger RNA Delivery via Lipid Nanoparticles.

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States.

Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97201, United States.

出版信息

Mol Pharm. 2022 Nov 7;19(11):4275-4285. doi: 10.1021/acs.molpharmaceut.2c00587. Epub 2022 Sep 21.

Abstract

Lipid nanoparticles containing messenger RNA (mRNA-LNPs) have launched to the forefront of nonviral delivery systems with their realized potential during the COVID-19 pandemic. Here, we investigate the impact of commonly used biological buffers on the performance and durability of mRNA-LNPs. We tested the compatibility of three common buffers─HEPES, Tris, and phosphate-buffered saline─with a DLin-MC3-DMA mRNA-LNP formulation before and after a single controlled freeze-thaw cycle. We hypothesized that buffer composition would affect lipid-aqueous phase separation. Indeed, the buffers imposed structural changes in LNP morphology as indicated by electron microscopy, differential scanning calorimetry, and membrane fluidity assays. We employed in vitro and in vivo models to measure mRNA transfection and found that Tris or HEPES-buffered LNPs yielded better cryoprotection and transfection efficiency compared to PBS. Understanding the effects of various buffers on LNP morphology and efficacy provides valuable insights into maintaining the stability of LNPs after long-term storage.

摘要

脂质纳米颗粒(LNPs)包含信使 RNA(mRNA-LNPs),在 COVID-19 大流行期间,其作为非病毒递送系统的潜力得到了充分发挥。在这里,我们研究了常用的生物缓冲液对 mRNA-LNPs 的性能和稳定性的影响。我们测试了三种常见缓冲液(HEPES、Tris 和磷酸盐缓冲盐水)在单个受控冻融循环前后与 DLin-MC3-DMA mRNA-LNP 制剂的相容性。我们假设缓冲液组成会影响脂质-水相间的分离。事实上,正如电子显微镜、差示扫描量热法和膜流动性测定所表明的那样,缓冲液会对 LNP 形态造成结构变化。我们使用体外和体内模型来测量 mRNA 转染,发现与 PBS 相比,Tris 或 HEPES 缓冲的 LNPs 具有更好的冷冻保护和转染效率。了解各种缓冲液对 LNP 形态和功效的影响,为长期储存后保持 LNPs 的稳定性提供了有价值的见解。

相似文献

4
Chemistry of Lipid Nanoparticles for RNA Delivery.脂质纳米颗粒的 RNA 递送化学。
Acc Chem Res. 2022 Jan 4;55(1):2-12. doi: 10.1021/acs.accounts.1c00544. Epub 2021 Dec 1.

引用本文的文献

1
Freeze-Drying of mRNA-LNPs Vaccines: A Review.mRNA-脂质纳米颗粒疫苗的冷冻干燥:综述
Vaccines (Basel). 2025 Aug 12;13(8):853. doi: 10.3390/vaccines13080853.
2
Exploring the potential of saponins as adjuvants in lipid-nanoparticle-based mRNA vaccines.探索皂苷作为基于脂质纳米颗粒的mRNA疫苗佐剂的潜力。
Mol Ther Methods Clin Dev. 2025 May 21;33(2):101495. doi: 10.1016/j.omtm.2025.101495. eCollection 2025 Jun 12.
4
Recent strategies for enhanced delivery of mRNA to the lungs.近期增强mRNA肺部递送的策略。
Nanomedicine (Lond). 2025 May;20(9):1043-1069. doi: 10.1080/17435889.2025.2485669. Epub 2025 Apr 7.

本文引用的文献

2
Chemistry of Lipid Nanoparticles for RNA Delivery.脂质纳米颗粒的 RNA 递送化学。
Acc Chem Res. 2022 Jan 4;55(1):2-12. doi: 10.1021/acs.accounts.1c00544. Epub 2021 Dec 1.
3
Lipid nanoparticles for mRNA delivery.用于mRNA递送的脂质纳米颗粒。
Nat Rev Mater. 2021;6(12):1078-1094. doi: 10.1038/s41578-021-00358-0. Epub 2021 Aug 10.
5
Lipids and Lipid Derivatives for RNA Delivery.用于 RNA 递送的脂质和脂质衍生物。
Chem Rev. 2021 Oct 27;121(20):12181-12277. doi: 10.1021/acs.chemrev.1c00244. Epub 2021 Jul 19.
6
Acidic pH-induced changes in lipid nanoparticle membrane packing.酸性 pH 值诱导的脂质纳米粒子膜堆积变化。
Biochim Biophys Acta Biomembr. 2021 Aug 1;1863(8):183627. doi: 10.1016/j.bbamem.2021.183627. Epub 2021 Apr 24.
7
Encapsulation state of messenger RNA inside lipid nanoparticles.mRNA 在内含体脂质纳米粒中的包封状态。
Biophys J. 2021 Jul 20;120(14):2766-2770. doi: 10.1016/j.bpj.2021.03.012. Epub 2021 Mar 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验