Suppr超能文献

UMS-Rep:用于高效医学图像分析的统一模态特定表示

UMS-Rep: Unified modality-specific representation for efficient medical image analysis.

作者信息

Zamzmi Ghada, Rajaraman Sivaramakrishnan, Antani Sameer

机构信息

National Library of Medicine, National institutes of Health, Bethesda, MD, USA.

出版信息

Inform Med Unlocked. 2021;24. doi: 10.1016/j.imu.2021.100571. Epub 2021 Apr 20.

Abstract

Medical image analysis typically includes several tasks such as enhancement, segmentation, and classification. Traditionally, these tasks are implemented using separate deep learning models for separate tasks, which is not efficient because it involves unnecessary training repetitions, demands greater computational resources, and requires a relatively large amount of labeled data. In this paper, we propose a multi-task training approach for medical image analysis, where individual tasks are fine-tuned simultaneously through relevant knowledge transfer using a unified modality-specific feature representation (UMS-Rep). We explore different fine-tuning strategies to demonstrate the impact of the strategy on the performance of target medical image tasks. We experiment with different visual tasks (e.g., image denoising, segmentation, and classification) to highlight the advantages offered with our approach for two imaging modalities, chest X-ray and Doppler echocardiography. Our results demonstrate that the proposed approach reduces the overall demand for computational resources and improves target task generalization and performance. Specifically, the proposed approach improves accuracy (up to ∼ 9% ↑) and decreases computational time (up to ∼ 86% ↓) as compared to the baseline approach. Further, our results prove that the performance of target tasks in medical images is highly influenced by the utilized fine-tuning strategy.

摘要

医学图像分析通常包括多个任务,如增强、分割和分类。传统上,这些任务是针对不同任务使用单独的深度学习模型来实现的,这并不高效,因为它涉及不必要的训练重复,需要更大的计算资源,并且需要相对大量的标注数据。在本文中,我们提出了一种用于医学图像分析的多任务训练方法,其中通过使用统一的特定模态特征表示(UMS-Rep)进行相关知识转移,同时对各个任务进行微调。我们探索不同的微调策略,以证明该策略对目标医学图像任务性能的影响。我们对不同的视觉任务(如图像去噪、分割和分类)进行实验,以突出我们的方法在胸部X光和多普勒超声心动图这两种成像模态上的优势。我们的结果表明,所提出的方法减少了对计算资源的总体需求,并提高了目标任务的泛化能力和性能。具体而言,与基线方法相比,所提出的方法提高了准确率(高达约9%↑)并减少了计算时间(高达约86%↓)。此外,我们的结果证明,医学图像中目标任务的性能受所采用的微调策略的影响很大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f757/10994192/80851d094f96/nihms-1910094-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验