文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物医学应用的核壳型磁电纳米粒子的建模:组成、尺寸和磁场特征对磁电响应的影响。

Modeling of core-shell magneto-electric nanoparticles for biomedical applications: Effect of composition, dimension, and magnetic field features on magnetoelectric response.

机构信息

Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy.

出版信息

PLoS One. 2022 Sep 23;17(9):e0274676. doi: 10.1371/journal.pone.0274676. eCollection 2022.


DOI:10.1371/journal.pone.0274676
PMID:36149898
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9506614/
Abstract

The recent development of core-shell nanoparticles which combine strain coupled magnetostrictive and piezoelectric phases, has attracted a lot of attention due to their ability to yield strong magnetoelectric effect even at room temperature, thus making them a promising tool to enable biomedical applications. To fully exploit their potentialities and to adapt their use to in vivo applications, this study analyzes, through a numerical approach, their magnetoelectric behavior, shortly quantified by the magnetoelectric coupling coefficient (αME), thus providing an important milestone for the characterization of the magnetoelectric effect at the nanoscale. In view of recent evidence showing that αME is strongly affected by both the applied magnetic field DC bias and AC frequency, this study implements a nonlinear model, based on magnetic hysteresis, to describe the responses of two different core-shell nanoparticles to various magnetic field excitation stimuli. The proposed model is also used to evaluate to which extent realistic variables such as core diameter and shell thickness affect the electric output. Results prove that αME of 80 nm cobalt ferrite-barium titanate (CFO-BTO) nanoparticles with a 60:40 ratio is equal to about 0.28 V/cm∙Oe corresponding to electric fields up to about 1000 V/cm when a strong DC bias is applied. However, the same electric output can be obtained even in absence of DC field with very low AC fields, by exploiting the hysteretic characteristics of the same composites. The analysis of core and shell dimension is as such to indicate that, to maximize αME, larger core diameter and thinner shell nanoparticles should be preferred. These results, taken together, suggest that it is possible to tune magnetoelectric nanoparticles electric responses by controlling their composition and their size, thus opening the opportunity to adapt their structure on the specific application to pursue.

摘要

最近开发的核壳纳米粒子结合了应变耦合磁致伸缩和压电相,由于它们在室温下就能产生强磁电效应,因此引起了广泛关注,这使它们成为实现生物医学应用的有前途的工具。为了充分发挥它们的潜力并使其适应体内应用,本研究通过数值方法分析了它们的磁电行为,通过磁电耦合系数(αME)简要量化,从而为纳米尺度上磁电效应的表征提供了重要的里程碑。鉴于最近的证据表明,αME 强烈受到施加的直流磁场偏置和交流频率的影响,本研究基于磁滞实现了一种非线性模型,以描述两种不同的核壳纳米粒子对各种磁场激励刺激的响应。所提出的模型还用于评估核心直径和壳厚度等实际变量对电输出的影响程度。结果证明,具有 60:40 比例的 80nm 钴铁氧体-钛酸钡(CFO-BTO)纳米粒子的αME 约等于 0.28V/cm·Oe,当施加强直流偏置时,对应的电场高达约 1000V/cm。然而,通过利用相同复合材料的磁滞特性,即使在没有直流场的情况下,也可以通过施加非常低的交流场来获得相同的电输出。对核心和壳层尺寸的分析表明,为了最大化αME,应优先选择较大的核心直径和较薄的壳层纳米粒子。这些结果表明,可以通过控制磁电纳米粒子的组成和尺寸来调节其电响应,从而为根据特定应用调整其结构提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffb/9506614/bb41390a9574/pone.0274676.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffb/9506614/d9dc21f6502e/pone.0274676.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffb/9506614/0934fca05b14/pone.0274676.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffb/9506614/aef89eb44746/pone.0274676.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffb/9506614/f3bf5d325be5/pone.0274676.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffb/9506614/bb41390a9574/pone.0274676.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffb/9506614/d9dc21f6502e/pone.0274676.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffb/9506614/0934fca05b14/pone.0274676.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffb/9506614/aef89eb44746/pone.0274676.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffb/9506614/f3bf5d325be5/pone.0274676.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffb/9506614/bb41390a9574/pone.0274676.g005.jpg

相似文献

[1]
Modeling of core-shell magneto-electric nanoparticles for biomedical applications: Effect of composition, dimension, and magnetic field features on magnetoelectric response.

PLoS One. 2022

[2]
Magnetoelectric nanoparticles shape modulates their electrical output.

Front Bioeng Biotechnol. 2023-8-25

[3]
Field-controlled magnetoelectric core-shell CoFeO@BaTiO nanoparticles as effective drug carriers and drug release in vitro.

Mater Sci Eng C Mater Biol Appl. 2021-2

[4]
In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles.

Sci Rep. 2022-5-19

[5]
Boosting Magnetoelectric Effect in Polymer-Based Nanocomposites.

Nanomaterials (Basel). 2021-4-28

[6]
Single-Entity Approach to Investigate Surface Charge Enhancement in Magnetoelectric Nanoparticles Induced by AC Magnetic Field Stimulation.

ACS Sens. 2021-2-26

[7]
Magnetoelectric coupling in nanoscale 0-1 connectivity.

Nanoscale. 2018-9-20

[8]
Effect of the Two-Dimensional Magnetostrictive Fillers of CoFeO-Intercalated Graphene Oxide Sheets in 3-2 Type Poly(vinylidene fluoride)-Based Magnetoelectric Films.

Polymers (Basel). 2021-5-28

[9]
Colossal Magnetoelectric Effect in Core-Shell Magnetoelectric Nanoparticles.

Nano Lett. 2020-8-12

[10]
Correction: Modeling of core-shell magneto-electric nanoparticles for biomedical applications: Effect of composition, dimension, and magnetic field features on magnetoelectric response.

PLoS One. 2024-11-20

引用本文的文献

[1]
Computational insights into magnetoelectric nanoparticles for neural stimulation.

Front Neurosci. 2025-4-28

[2]
Foundational insights for theranostic applications of magnetoelectric nanoparticles.

Nanoscale Horiz. 2025-3-24

[3]
Multiphysics analysis of the dual role of magnetoelectric nanoparticles in a microvascular environment: from magnetic targeting to electrical activation.

Front Bioeng Biotechnol. 2025-1-7

[4]
Temperature-Dependent Cytokine Neutralization Induced by Magnetoelectric Nanoparticles: An In Silico Study.

Int J Mol Sci. 2024-12-19

[5]
Correction: Modeling of core-shell magneto-electric nanoparticles for biomedical applications: Effect of composition, dimension, and magnetic field features on magnetoelectric response.

PLoS One. 2024-11-20

[6]
Multiphysics simulation of magnetoelectric micro core-shells for wireless cellular stimulation therapy via magnetic temporal interference.

PLoS One. 2024-1-25

[7]
Magnetoelectric nanoparticles shape modulates their electrical output.

Front Bioeng Biotechnol. 2023-8-25

本文引用的文献

[1]
In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles.

Sci Rep. 2022-5-19

[2]
Computational Framework of Magnetized MgO-Ni/Water-Based Stagnation Nanoflow Past an Elastic Stretching Surface: Application in Solar Energy Coatings.

Nanomaterials (Basel). 2022-3-23

[3]
Where do we stand now regarding treatment of psychiatric and neurodegenerative disorders? Considerations in using magnetoelectric nanoparticles as an innovative approach.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-5

[4]
Magnetoelectric effect: principles and applications in biology and medicine- a review.

Mater Today Bio. 2021-10-13

[5]
Magnetoelectric Nanoparticles Incorporated Biomimetic Matrix for Wireless Electrical Stimulation and Nerve Regeneration.

Adv Healthc Mater. 2021-8

[6]
In Vivo Wireless Brain Stimulation via Non-invasive and Targeted Delivery of Magnetoelectric Nanoparticles.

Neurotherapeutics. 2021-7

[7]
Nonresonant powering of injectable nanoelectrodes enables wireless deep brain stimulation in freely moving mice.

Sci Adv. 2021-1-13

[8]
Size-dependent intranasal administration of magnetoelectric nanoparticles for targeted brain localization.

Nanomedicine. 2021-2

[9]
Colossal Magnetoelectric Effect in Core-Shell Magnetoelectric Nanoparticles.

Nano Lett. 2020-8-12

[10]
Magnetoelectric Materials for Miniature, Wireless Neural Stimulation at Therapeutic Frequencies.

Neuron. 2020-6-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索