Vezzoni Alessia, Chiaramello Emma, Galletta Valentina, Bonato Marta, Parazzini Marta, Fiocchi Serena
Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.
Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy.
Front Neurosci. 2025 Apr 28;19:1583152. doi: 10.3389/fnins.2025.1583152. eCollection 2025.
This study investigates the potential of magnetoelectric nanoparticles (MENPs) as a novel tool for localized electric stimulation of the central nervous system at single-neuron level, addressing the need for precise and minimally invasive neural modulation.
Using a computational framework based on finite element methods coupled with neuronal dynamics simulations on a realistic model of a hippocampal CA1 pyramidal neuron, the study evaluates how MENPs' stimulation parameters influence neural activation. Analyses included electric potential distributions, the activating function along the axon, amplification coefficients required for action potential generation, spike propagation, and membrane potential. The study initially focused on highly localized stimulation using a nanometric MENP close to the axon and then demonstrated the feasibility of a more realistic framework involving a micrometric cluster of MENPs. To emulate physiological signal convergence, the summation effects of multiple MENPs strategically positioned across the basal dendritic tree near the axon were explored.
The findings revealed the critical role of MENPs' configuration, location, and modulating stimuli in shaping neuronal responses, highlighting the feasibility of MENPs as a cutting-edge approach for precise neural stimulation. This work provides a foundation for integrating MENPs into therapeutic strategies for neurodegenerative diseases.
本研究探讨了磁电纳米颗粒(MENPs)作为一种在单神经元水平对中枢神经系统进行局部电刺激的新型工具的潜力,以满足对精确且微创神经调节的需求。
该研究使用基于有限元方法的计算框架,并结合在海马CA1锥体神经元的真实模型上进行的神经元动力学模拟,评估了MENPs的刺激参数如何影响神经激活。分析内容包括电势分布、沿轴突的激活函数、产生动作电位所需的放大系数、尖峰传播和膜电位。该研究最初聚焦于使用靠近轴突的纳米级MENP进行高度局部化刺激,随后证明了涉及微米级MENP簇的更现实框架的可行性。为了模拟生理信号汇聚,研究了在轴突附近的基底树突上战略性定位的多个MENP的叠加效应。
研究结果揭示了MENPs的配置、位置和调制刺激在塑造神经元反应中的关键作用,突出了MENPs作为精确神经刺激前沿方法的可行性。这项工作为将MENPs整合到神经退行性疾病的治疗策略中奠定了基础。