Arip Masita, Tan Lee Fang, Jayaraj Rama, Abdullah Maha, Rajagopal Mogana, Selvaraja Malarvili
Allergy & Immunology Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, 40170 Shah Alam, Selangor, Malaysia.
Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
Discov Oncol. 2022 Sep 24;13(1):91. doi: 10.1007/s12672-022-00551-9.
As the fourth most diagnosed cancer, cervical cancer (CC) is one of the major causes of cancer-related mortality affecting females globally, particularly when diagnosed at advanced stage. Discoveries of CC biomarkers pave the road to precision medicine for better patient outcomes. High throughput omics technologies, characterized by big data production further accelerate the process. To date, various CC biomarkers have been discovered through the advancement in technologies. Despite, very few have successfully translated into clinical practice due to the paucity of validation through large scale clinical studies. While vast amounts of data are generated by the omics technologies, challenges arise in identifying the clinically relevant data for translational research as analyses of single-level omics approaches rarely provide causal relations. Integrative multi-omics approaches across different levels of cellular function enable better comprehension of the fundamental biology of CC by highlighting the interrelationships of the involved biomolecules and their function, aiding in identification of novel integrated biomarker profile for precision medicine. Establishment of a worldwide Early Detection Research Network (EDRN) system helps accelerating the pace of biomarker translation. To fill the research gap, we review the recent research progress on CC biomarker development from the application of high throughput omics technologies with sections covering genomics, transcriptomics, proteomics, and metabolomics.
作为第四大最常被诊断出的癌症,宫颈癌(CC)是全球影响女性的癌症相关死亡的主要原因之一,尤其是在晚期被诊断出来的时候。宫颈癌生物标志物的发现为实现精准医疗以改善患者预后铺平了道路。以大数据产生为特征的高通量组学技术进一步加速了这一进程。迄今为止,通过技术进步已经发现了各种宫颈癌生物标志物。尽管如此,由于缺乏大规模临床研究的验证,很少有生物标志物能够成功转化为临床实践。虽然组学技术产生了大量数据,但在识别用于转化研究的临床相关数据方面仍存在挑战,因为单一层面的组学方法分析很少能提供因果关系。跨不同细胞功能水平的综合多组学方法通过突出所涉及生物分子之间的相互关系及其功能,能够更好地理解宫颈癌的基础生物学,有助于识别用于精准医疗的新型综合生物标志物谱。建立全球早期检测研究网络(EDRN)系统有助于加快生物标志物转化的步伐。为了填补研究空白,我们回顾了高通量组学技术在宫颈癌生物标志物开发方面的最新研究进展,涵盖基因组学、转录组学、蛋白质组学和代谢组学等部分。