Elderdery Abozer Y, Alzahrani Badr, Hamza Siddiqa M A, Mostafa-Hedeab Gomaa, Mok Pooi Ling, Subbiah Suresh Kumar
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.
Faculty of Medicine, Department of Pathology, Umm Alqura University, Algunfuda, Mecca, Saudi Arabia.
Bioinorg Chem Appl. 2022 Sep 17;2022:9602725. doi: 10.1155/2022/9602725. eCollection 2022.
In this study, cells from human Chronic Myelogenous Leukemia (K562) were cultivated with CuO-TiO-Chitosan-Berbamine nanocomposites. We examined nanocomposites using XRD, DLS, FESEM, TEM, PL, EDAX, and FTIR spectroscopy, as well as MTT for cytotoxicity, and AO/EtBr for apoptotic morphology assessment. The rate of apoptosis and cell cycle arrests was determined using flow cytometry. Flow cytometry was also employed to identify pro- and antiapoptotic proteins such as Bcl2, Bad, Bax, P53, and Cyt C. The FTIR spectrum revealed that the CuO-TiO-Chitosan-Berbamine nanocomposites were electrostatically interlocked. The nanocomposites' XRD signals revealed a hexagonal shape. In the DLS spectrum, nanocomposites were found to have a hydrodynamic diameter. As a result of their cytotoxic action, nanocomposites displayed concentration-dependent cytotoxicity. The nanocomposites, like Doxorubicin, caused cell cycle phase arrest in K562 cells. After treatment with IC concentrations of CuO-TiO-Chitosan-Berbamine nanocomposites and Doxorubicin, a substantial percentage of cells were in G2/M stage arrest. Caspase-3, -7, -8, -9, Bax, Bad, Cyt C, and P53 expression were considerably enhanced in K562 cells, whereas Bcl2 expression was decreased, indicating that these cells may have therapeutic potential against human blood cancer/leukemia-derived disorders. As a result, the nanocomposites demonstrated outstanding anticancer potential against leukemic cells. CuO-TiO-Chitosan-Berbamine, according to our findings.
在本研究中,将人慢性粒细胞白血病(K562)细胞与氧化铜-二氧化钛-壳聚糖-小檗胺纳米复合材料共同培养。我们使用X射线衍射(XRD)、动态光散射(DLS)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、光致发光(PL)、能量散射X射线光谱(EDAX)和傅里叶变换红外光谱(FTIR)对纳米复合材料进行了检测,同时采用MTT法检测细胞毒性,并使用AO/EtBr法评估细胞凋亡形态。通过流式细胞术测定细胞凋亡率和细胞周期阻滞情况。流式细胞术还用于鉴定促凋亡和抗凋亡蛋白,如Bcl2、Bad、Bax、P53和细胞色素C(Cyt C)。FTIR光谱显示氧化铜-二氧化钛-壳聚糖-小檗胺纳米复合材料通过静电相互锁定。纳米复合材料的XRD信号显示为六边形。在DLS光谱中,发现纳米复合材料具有流体动力学直径。由于其细胞毒性作用,纳米复合材料表现出浓度依赖性细胞毒性。与阿霉素一样,纳米复合材料导致K562细胞的细胞周期阶段阻滞。在用氧化铜-二氧化钛-壳聚糖-小檗胺纳米复合材料和阿霉素的半数抑制浓度(IC)处理后,相当比例的细胞停滞在G2/M期。K562细胞中半胱天冬酶-3、-7、-8、-9、Bax、Bad、Cyt C和P53的表达显著增强,而Bcl2表达降低,表明这些细胞可能对人类血癌/白血病衍生疾病具有治疗潜力。因此,纳米复合材料对白血病细胞显示出出色的抗癌潜力。根据我们的研究结果,氧化铜-二氧化钛-壳聚糖-小檗胺……