Suppr超能文献

MSRAformer:用于息肉分割的多尺度空间反向注意网络。

MSRAformer: Multiscale spatial reverse attention network for polyp segmentation.

机构信息

School of computer science, Hubei University of Technology, Wuhan, China.

School of computer science, Hubei University of Technology, Wuhan, China.

出版信息

Comput Biol Med. 2022 Dec;151(Pt A):106274. doi: 10.1016/j.compbiomed.2022.106274. Epub 2022 Nov 9.

Abstract

Colon polyp is an important reference basis in the diagnosis of colorectal cancer(CRC). In routine diagnosis, the polyp area is segmented from the colorectal enteroscopy image, and the obtained pathological information is used to assist in the diagnosis of the disease and surgery. It is always a challenging task for accurate segmentation of polyps in colonoscopy images. There are great differences in shape, size, color and texture of the same type of polyps, and it is difficult to distinguish the polyp region from the mucosal boundary. In recent years, convolutional neural network(CNN) has achieved some results in the task of medical image segmentation. However, CNNs focus on the extraction of local features and be short of the extracting ability of global feature information. This paper presents a Multiscale Spatial Reverse Attention Network called MSRAformer with high performance in medical segmentation, which adopts the Swin Transformer encoder with pyramid structure to extract the features of four different stages, and extracts the multi-scale feature information through the multi-scale channel attention module, which enhances the global feature extraction ability and generalization of the network, and preliminarily aggregates a pre-segmentation result. This paper proposes a spatial reverse attention mechanism module to gradually supplement the edge structure and detail information of the polyp region. Extensive experiments on MSRAformer proved that the segmentation effect on the colonoscopy polyp dataset is better than most state-of-the-art(SOTA) medical image segmentation methods, with better generalization performance. Reference implementation of MSRAformer is available at https://github.com/ChengLong1222/MSRAformer-main.

摘要

结肠息肉是结直肠癌(CRC)诊断的重要参考依据。在常规诊断中,从结直肠内窥镜图像中分割息肉区域,并获取获得的病理信息用于辅助疾病诊断和手术。准确分割内窥镜图像中的息肉一直是一项具有挑战性的任务。同一类型的息肉在形状、大小、颜色和纹理上存在很大差异,很难从黏膜边界区分息肉区域。近年来,卷积神经网络(CNN)在医学图像分割任务中取得了一些成果。然而,CNN 侧重于局部特征的提取,缺乏全局特征信息的提取能力。本文提出了一种名为 MSRAformer 的多尺度空间反向注意力网络,该网络在医学分割中具有高性能,它采用具有金字塔结构的 Swin Transformer 编码器提取四个不同阶段的特征,并通过多尺度通道注意力模块提取多尺度特征信息,增强了网络的全局特征提取能力和泛化能力,并初步汇总了预分割结果。本文提出了一种空间反向注意力机制模块,用于逐步补充息肉区域的边缘结构和细节信息。在结肠内窥镜息肉数据集上的广泛实验证明,MSRAformer 的分割效果优于大多数最先进的医学图像分割方法,具有更好的泛化性能。MSRAformer 的参考实现可在 https://github.com/ChengLong1222/MSRAformer-main 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验