Suppr超能文献

基于全身炎症标志物的个人预测模型用于评估胰十二指肠切除术后胰瘘

Personal predictive model based on systemic inflammation markers for estimation of postoperative pancreatic fistula following pancreaticoduodenectomy.

作者信息

Long Zhi-Da, Lu Chao, Xia Xi-Gang, Chen Bo, Xing Zhi-Xiang, Bie Lei, Zhou Peng, Ma Zhong-Lin, Wang Rui

机构信息

Department of Hepatobiliary and Pancreaticosplenic Surgery, Jingzhou Hospital, Yangtze University, Jingzhou 434020, Hubei Province, China.

Department of Hepatobiliary Surgery, Lu'an Hospital of AnHui Medical University, Hefei 237006, Anhui Province, China.

出版信息

World J Gastrointest Surg. 2022 Sep 27;14(9):963-975. doi: 10.4240/wjgs.v14.i9.963.

Abstract

BACKGROUND

Postoperative pancreatic fistula (PF) is a serious life-threatening complication after pancreaticoduodenectomy (PD). Our research aimed to develop a machine learning (ML)-aided model for PF risk stratification.

AIM

To develop an ML-aided model for PF risk stratification.

METHODS

We retrospectively collected 618 patients who underwent PD from two tertiary medical centers between January 2012 and August 2021. We used an ML algorithm to build predictive models, and subject prediction index, that is, decision curve analysis, area under operating characteristic curve (AUC) and clinical impact curve to assess the predictive efficiency of each model.

RESULTS

A total of 29 variables were used to build the ML predictive model. Among them, the best predictive model was random forest classifier (RFC), the AUC was [0.897, 95% confidence interval (CI): 0.370-1.424], while the AUC of the artificial neural network, eXtreme gradient boosting, support vector machine, and decision tree were between 0.726 (95%CI: 0.191-1.261) and 0.882 (95%CI: 0.321-1.443).

CONCLUSION

Fluctuating serological inflammatory markers and prognostic nutritional index can be used to predict postoperative PF.

摘要

背景

术后胰瘘(PF)是胰十二指肠切除术(PD)后一种严重的危及生命的并发症。我们的研究旨在开发一种用于PF风险分层的机器学习(ML)辅助模型。

目的

开发一种用于PF风险分层的ML辅助模型。

方法

我们回顾性收集了2012年1月至2021年8月期间在两个三级医疗中心接受PD的618例患者。我们使用ML算法构建预测模型,并通过受试者预测指数,即决策曲线分析、操作特征曲线下面积(AUC)和临床影响曲线来评估每个模型的预测效率。

结果

共使用29个变量构建ML预测模型。其中,最佳预测模型是随机森林分类器(RFC),AUC为[0.897,95%置信区间(CI):0.370 - 1.424],而人工神经网络、极端梯度提升、支持向量机和决策树的AUC在0.726(95%CI:0.191 - 1.261)至0.882(95%CI:0.321 - 1.443)之间。

结论

波动的血清学炎症标志物和预后营养指数可用于预测术后PF。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3d9/9521470/fc8b44ae6b0a/WJGS-14-963-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验