Miot Hélio Amante
Universidade Estadual Paulista - UNESP, Faculdade de Medicina de Botucatu, Departamento de Dermatologia e Radioterapia, Botucatu, SP, Brasil.
J Vasc Bras. 2019 May 21;18:e20190004. doi: 10.1590/1677-5449.190004.
During analysis of scientific research data, it is customary to encounter anomalous values or missing data. Anomalous values can be the result of errors of recording, typing, measurement by instruments, or may be true outliers. This review discusses concepts, examples and methods for identifying and dealing with such contingencies. In the case of missing data, techniques for imputation of the values are discussed in, order to avoid exclusion of the research subject, if it is not possible to retrieve information from registration forms or to re-address the participant.
在分析科研数据时,遇到异常值或缺失数据是很常见的。异常值可能是记录、打字、仪器测量错误的结果,也可能是真正的离群值。本综述讨论了识别和处理此类意外情况的概念、示例及方法。对于缺失数据的情况,如果无法从登记表中获取信息或重新联系参与者,将讨论数据插补技术,以避免排除研究对象。