Liu Xiafei, Wang Mengxuan, Li Shan, Li Jingxin, Xiao Jinbo, Li Huiying, Zhang Qing, Kong Xiangyu, Wang Hong, Li Dandi, Duan Zhaojun
Chinese Center for Disease Control and Prevention, National Institute for Viral Diseases Control and Prevention, Beijing, China.
School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China.
Front Microbiol. 2022 Sep 16;13:997957. doi: 10.3389/fmicb.2022.997957. eCollection 2022.
G9P[8] became the predominant rotavirus A (RVA) genotype in China in 2012. To evaluate its genetic composition at the whole-genome level, 115 G9P[8] RVA strains isolated from children under 5 years old were sequenced and characterized. All 13 strains in 2016 and 2017 and an additional 54 strains in 2018 were genotyped as G9-P[8]-I1-R1-C1-M1-A1-N1-T1--H1. The other 48 strains in 2018 were all genotyped as G9-P[8]-I1-R1-C1-M1-A1-N1-T1--H1, with the NSP4 gene characterized as a DS-1-like genotype. The time of the most recent common ancestor (tMRCA) and evolution rates of the VP7, VP4, and NSP4 (E1 and E2) genes of these strains were estimated by Bayesian evolutionary dynamics analysis. We estimated the evolution rates (nt substitutions per site per year) as 1.38 × 10 [the 95% highest posterior density (HPD) was 1.09-1.72 × 10] for VP7, 0.87 × 10 (95% HPD: 0.75-1.00 × 10) for VP4, 0.56 × 10 (95% HPD: 0.41-0.73 × 10) for NSP4-E1, and 1.35 × 10 (95% HPD: 0.92-1.86 × 10) for NSP4-E2. The tMRCA was estimated to be 1935.4 (95% HPD: 1892.4-1961.3) for VP7, 1894.3 (95% HPD: 1850.5-1937.8) for VP4, 1929.4 (95% HPD: 1892.4-1961.3) for NSP4-E1, and 1969.2 (95% HPD: 1942.2-1985.3) for NSP4-E2. The baseline genetic information in this study is expected to improve our understanding of the genomic and evolutionary characteristics of the rotavirus genome. Furthermore, it will provide a basis for the development of next-generation rotavirus vaccines for humans.
G9P[8]在2012年成为中国主要的A组轮状病毒(RVA)基因型。为了在全基因组水平评估其基因组成,对从5岁以下儿童中分离出的115株G9P[8] RVA毒株进行了测序和特征分析。2016年和2017年的所有13株毒株以及2018年另外54株毒株的基因型均为G9-P[8]-I1-R1-C1-M1-A1-N1-T1--H1。2018年的其他48株毒株基因型也均为G9-P[8]-I1-R1-C1-M1-A1-N1-T1--H1,其NSP4基因特征为DS-1样基因型。通过贝叶斯进化动力学分析估计了这些毒株的VP7、VP4和NSP4(E1和E2)基因的最近共同祖先时间(tMRCA)和进化速率。我们估计VP7的进化速率(每年每个位点的核苷酸替换数)为1.38×10[95%最高后验密度(HPD)为1.09 - 1.72×10],VP4为0.87×10(95% HPD:0.75 - 1.00×10),NSP4-E1为0.56×10(95% HPD:0.41 - 0.73×10),NSP4-E2为1.35×10(95% HPD:0.92 - 1.86×10)。VP7的tMRCA估计为1935.4(95% HPD:1892.4 - 1961.3),VP4为1894.3(95% HPD:1850.5 - 1937.8),NSP4-E1为1929.4(95% HPD:1892.4 - 1961.3),NSP4-E2为1969.2(95% HPD:1942.2 - 1985.3)。本研究中的基线基因信息有望增进我们对轮状病毒基因组的基因组和进化特征的理解。此外,它将为开发下一代人用轮状病毒疫苗提供依据。