Suppr超能文献

应用可解释机器学习工作流程评估大分子肿瘤药物的暴露-反应关系。

Applying interpretable machine learning workflow to evaluate exposure-response relationships for large-molecule oncology drugs.

机构信息

Department of Clinical Pharmacology, Genentech, South San Francisco, California, USA.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2022 Dec;11(12):1614-1627. doi: 10.1002/psp4.12871. Epub 2022 Oct 20.

Abstract

The application of logistic regression (LR) and Cox Proportional Hazard (CoxPH) models are well-established for evaluating exposure-response (E-R) relationship in large molecule oncology drugs. However, applying machine learning (ML) models on evaluating E-R relationships has not been widely explored. We developed a workflow to train regularized LR/CoxPH and tree-based XGboost (XGB) models, and derive the odds ratios for best overall response and hazard ratios for overall survival, across exposure quantiles to evaluate the E-R relationship using clinical trial datasets. The E-R conclusions between LR/CoxPH and XGB models are overall consistent, and largely aligned with historical pharmacometric analyses findings. Overall, applying this interpretable ML workflow provides a promising alternative method to assess E-R relationships for impacting key dosing decisions in drug development.

摘要

逻辑回归(LR)和 Cox 比例风险(CoxPH)模型在评估大分子肿瘤药物中的暴露-反应(E-R)关系方面的应用已经非常成熟。然而,应用机器学习(ML)模型来评估 E-R 关系尚未得到广泛探索。我们开发了一种工作流程,用于训练正则化 LR/CoxPH 和基于树的 XGBoost(XGB)模型,并根据暴露分位数得出最佳总体反应的优势比和总体生存的风险比,以使用临床试验数据集评估 E-R 关系。LR/CoxPH 和 XGB 模型之间的 E-R 结论总体上是一致的,并且与历史药代动力学分析结果基本一致。总体而言,应用这种可解释的 ML 工作流程为评估 E-R 关系提供了一种有前途的替代方法,可用于影响药物开发中的关键剂量决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa2/9755920/f7742943eabf/PSP4-11-1614-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验