Modeling and Simulation Group, Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA.
CPT Pharmacometrics Syst Pharmacol. 2022 Nov;11(11):1511-1526. doi: 10.1002/psp4.12859. Epub 2022 Sep 16.
A Cox proportional hazard (CoxPH) model is conventionally used to assess exposure-response (E-R), but its performance to uncover the ground truth when only one dose level of data is available has not been systematically evaluated. We established a simulation workflow to generate realistic E-R datasets to assess the performance of the CoxPH model in recovering the E-R ground truth in various scenarios, considering two potential reasons for the confounded E-R relationship. We found that at high doses, when the pharmacological effects are largely saturated, missing important confounders is the major reason for inferring false-positive E-R relationships. At low doses, when a positive E-R slope is the ground truth, either missing important confounders or mis-specifying the interactions can lead to inaccurate estimates of the E-R slope. This work constructed a simulation workflow generally applicable to clinical datasets to generate clinically relevant simulations and provide an in-depth interpretation on the E-R relationships with confounders inferred by the conventional CoxPH model.
传统上使用 Cox 比例风险(CoxPH)模型来评估暴露-反应(E-R)关系,但当只有一个剂量水平的数据时,它揭示真实关系的性能尚未得到系统评估。我们建立了一个模拟工作流程来生成现实的 E-R 数据集,以评估 CoxPH 模型在各种情况下恢复 E-R 真实关系的性能,同时考虑了 E-R 关系混杂的两种潜在原因。我们发现,在高剂量时,当药理学效应基本饱和时,遗漏重要混杂因素是推断错误 E-R 关系的主要原因。在低剂量时,当正向 E-R 斜率是真实关系时,遗漏重要混杂因素或错误指定交互作用都会导致 E-R 斜率的估计不准确。这项工作构建了一个模拟工作流程,通常适用于临床数据集,以生成具有临床相关性的模拟,并对传统 CoxPH 模型推断的混杂 E-R 关系进行深入解释。