Suppr超能文献

Cox 比例风险模型在恢复大型分子肿瘤药物混杂暴露反应关系的真实情况方面的性能。

Performance of Cox proportional hazard models on recovering the ground truth of confounded exposure-response relationships for large-molecule oncology drugs.

机构信息

Modeling and Simulation Group, Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2022 Nov;11(11):1511-1526. doi: 10.1002/psp4.12859. Epub 2022 Sep 16.

Abstract

A Cox proportional hazard (CoxPH) model is conventionally used to assess exposure-response (E-R), but its performance to uncover the ground truth when only one dose level of data is available has not been systematically evaluated. We established a simulation workflow to generate realistic E-R datasets to assess the performance of the CoxPH model in recovering the E-R ground truth in various scenarios, considering two potential reasons for the confounded E-R relationship. We found that at high doses, when the pharmacological effects are largely saturated, missing important confounders is the major reason for inferring false-positive E-R relationships. At low doses, when a positive E-R slope is the ground truth, either missing important confounders or mis-specifying the interactions can lead to inaccurate estimates of the E-R slope. This work constructed a simulation workflow generally applicable to clinical datasets to generate clinically relevant simulations and provide an in-depth interpretation on the E-R relationships with confounders inferred by the conventional CoxPH model.

摘要

传统上使用 Cox 比例风险(CoxPH)模型来评估暴露-反应(E-R)关系,但当只有一个剂量水平的数据时,它揭示真实关系的性能尚未得到系统评估。我们建立了一个模拟工作流程来生成现实的 E-R 数据集,以评估 CoxPH 模型在各种情况下恢复 E-R 真实关系的性能,同时考虑了 E-R 关系混杂的两种潜在原因。我们发现,在高剂量时,当药理学效应基本饱和时,遗漏重要混杂因素是推断错误 E-R 关系的主要原因。在低剂量时,当正向 E-R 斜率是真实关系时,遗漏重要混杂因素或错误指定交互作用都会导致 E-R 斜率的估计不准确。这项工作构建了一个模拟工作流程,通常适用于临床数据集,以生成具有临床相关性的模拟,并对传统 CoxPH 模型推断的混杂 E-R 关系进行深入解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3277/9662202/04a4958b9cfe/PSP4-11-1511-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验