Suppr超能文献

使用多模态数据识别预测向阿尔茨海默病转化的轻度认知障碍亚型。

Identification of mild cognitive impairment subtypes predicting conversion to Alzheimer's disease using multimodal data.

作者信息

Kikuchi Masataka, Kobayashi Kaori, Itoh Sakiko, Kasuga Kensaku, Miyashita Akinori, Ikeuchi Takeshi, Yumoto Eiji, Kosaka Yuki, Fushimi Yasuto, Takeda Toshihiro, Manabe Shirou, Hattori Satoshi, Nakaya Akihiro, Kamijo Kenichi, Matsumura Yasushi

机构信息

Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan.

Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan.

出版信息

Comput Struct Biotechnol J. 2022 Aug 22;20:5296-5308. doi: 10.1016/j.csbj.2022.08.007. eCollection 2022.

Abstract

Mild cognitive impairment (MCI) is a high-risk condition for conversion to Alzheimer's disease (AD) dementia. However, individuals with MCI show heterogeneous patterns of pathology and conversion to AD dementia. Thus, detailed subtyping of MCI subjects and accurate prediction of the patients in whom MCI will convert to AD dementia is critical for identifying at-risk populations and the underlying biological features. To this end, we developed a model that simultaneously subtypes MCI subjects and predicts conversion to AD and performed an analysis of the underlying biological characteristics of each subtype. In particular, a heterogeneous mixture learning (HML) method was used to build a decision tree-based model based on multimodal data, including cerebrospinal fluid (CSF) biomarker data, structural magnetic resonance imaging (MRI) data, genotype data, and age at examination. The HML model showed an average F1 score of 0.721, which was comparable to the random forest method and had significantly more predictive accuracy than the CART method. The HML-generated decision tree was also used to classify-five subtypes of MCI. Each MCI subtype was characterized in terms of the degree of abnormality in CSF biomarkers, brain atrophy, and cognitive decline. The five subtypes of MCI were further categorized into three groups: one subtype with low conversion rates (similar to cognitively normal subjects); three subtypes with moderate conversion rates; and one subtype with high conversion rates (similar to AD dementia patients). The subtypes with moderate conversion rates were subsequently separated into a group with CSF biomarker abnormalities and a group with brain atrophy. The subtypes identified in this study exhibited varying MCI-to-AD conversion rates and differing biological profiles.

摘要

轻度认知障碍(MCI)是转化为阿尔茨海默病(AD)痴呆的高危状态。然而,MCI个体表现出不同的病理模式和向AD痴呆的转化情况。因此,对MCI受试者进行详细的亚型分类以及准确预测哪些MCI患者会转化为AD痴呆,对于识别高危人群和潜在的生物学特征至关重要。为此,我们开发了一种模型,该模型能同时对MCI受试者进行亚型分类并预测向AD的转化,还对每个亚型的潜在生物学特征进行了分析。具体而言,采用了一种异质混合学习(HML)方法,基于多模态数据构建基于决策树的模型,这些多模态数据包括脑脊液(CSF)生物标志物数据、结构磁共振成像(MRI)数据、基因型数据以及检查时的年龄。HML模型的平均F1分数为0.721,与随机森林方法相当,且预测准确性显著高于CART方法。HML生成的决策树还用于对MCI的五个亚型进行分类。每个MCI亚型都根据CSF生物标志物的异常程度、脑萎缩和认知衰退情况进行了特征描述。MCI的五个亚型进一步分为三组:一个转化率低的亚型(类似于认知正常的受试者);三个转化率中等的亚型;以及一个转化率高的亚型(类似于AD痴呆患者)。转化率中等的亚型随后又被分为CSF生物标志物异常组和脑萎缩组。本研究中确定的亚型表现出不同的MCI向AD转化率和不同的生物学特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc5f/9513733/e81f77372b69/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验