Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
China Academy of Space Technology, Beijing, 100094, China.
Microbiome. 2022 Oct 12;10(1):169. doi: 10.1186/s40168-022-01350-8.
Chinese Lunar Palace 1 (LP1) is a ground-based bio-regenerative life support system (BLSS) test bed integrating highly efficient plant cultivation, animal protein production, urine nitrogen recycling, and bioconversion of solid waste. To date, there has been no molecular method-based detailed investigation of the fungal community and mycotoxin potential in BLSS habitats. To ensure safe BLSS design for actual space missions, we analyzed the LP1 surface mycobiome and mycotoxin potential during the Lunar Palace 365 project through internal transcribed spacer region 1 (ITS1) amplicon sequencing and quantitative polymerase chain reaction (qPCR) with primers specific for idh, ver1, nor1, tri5, and ITS1.
The LP1 system exhibited significant differences in fungal community diversity compared to other confined habitats, with higher fungal alpha diversity and different community structures. Significant differences existed in the surface fungal communities of the LP1 habitat due to the presence of different occupant groups. However, there was no significant difference between fungal communities in the plant cabin with various occupants. Source tracker analysis shows that most of the surface fungi in LP1 originated from plants. Regardless of differences in occupants or location, there were no significant differences in mycotoxin gene copy number.
Our study reveals that plants are the most crucial source of the surface fungal microbiome; however, occupant turnover can induce significant perturbations in the surface fungal community in a BLSS. Growing plants reduced fungal fluctuations, maintaining a healthy balance in the surface fungal microbiome and mycotoxin potential. Moreover, our study provides data important to (i) future risk considerations in crewed space missions with long-term residency, (ii) an optimized design and planning of a space mission that incorporates crew shifts and plant growth, and (iii) the expansion of our knowledge of indoor fungal communities with plant growth, which is essential to maintain safe working and living environments. Video Abstract.
中国月宫一号(LP1)是一个地面生物再生生命保障系统(BLSS)测试平台,集成了高效植物栽培、动物蛋白生产、尿液氮回收和固体废物生物转化。迄今为止,还没有基于分子方法对 BLSS 栖息地中的真菌群落和真菌毒素潜力进行详细调查。为了确保实际空间任务的 BLSS 设计安全,我们通过内部转录间隔区 1(ITS1)扩增子测序和针对 idh、ver1、nor1、tri5 和 ITS1 的特异性引物的定量聚合酶链反应(qPCR),分析了月宫 365 项目中 LP1 表面真菌组和真菌毒素潜力。
与其他封闭栖息地相比,LP1 系统的真菌群落多样性表现出显著差异,具有更高的真菌α多样性和不同的群落结构。由于不同的居住群体的存在,LP1 栖息地的表面真菌群落存在显著差异。然而,不同居住者的植物舱中的真菌群落没有显著差异。源追踪分析表明,LP1 表面的大多数真菌都来源于植物。无论居住者或位置如何,真菌毒素基因拷贝数均无显著差异。
我们的研究表明,植物是表面真菌微生物组的最重要来源;然而,BLSS 中的居住者更替会引起表面真菌群落的显著波动。种植植物减少了真菌的波动,维持了表面真菌微生物组和真菌毒素潜力的健康平衡。此外,我们的研究为(i)长期居住的载人航天任务中的未来风险考虑提供了重要数据,(ii)为包含乘员更替和植物生长的空间任务的优化设计和规划提供了重要数据,以及(iii)为我们的知识扩展提供了重要数据,即室内真菌群落与植物生长有关,这对于维持安全的工作和生活环境至关重要。