Nie Wan, Yu Yingying, Wang Xueying, Wang Ruohan, Li Shuai Cheng
Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China.
City University of Hong Kong (Dongguan), Dongguan, 523000, China.
Adv Sci (Weinh). 2024 Dec;11(45):e2403572. doi: 10.1002/advs.202403572. Epub 2024 Oct 9.
Embeddings derived from cell graphs hold significant potential for exploring spatial transcriptomics (ST) datasets. Nevertheless, existing methodologies rely on a graph structure defined by spatial proximity, which inadequately represents the diversity inherent in cell-cell interactions (CCIs). This study introduces STAGUE, an innovative framework that concurrently learns a cell graph structure and a low-dimensional embedding from ST data. STAGUE employs graph structure learning to parameterize and refine a cell graph adjacency matrix, enabling the generation of learnable graph views for effective contrastive learning. The derived embeddings and cell graph improve spatial clustering accuracy and facilitate the discovery of novel CCIs. Experimental benchmarks across 86 real and simulated ST datasets show that STAGUE outperforms 15 comparison methods in clustering performance. Additionally, STAGUE delineates the heterogeneity in human breast cancer tissues, revealing the activation of epithelial-to-mesenchymal transition and PI3K/AKT signaling in specific sub-regions. Furthermore, STAGUE identifies CCIs with greater alignment to established biological knowledge than those ascertained by existing graph autoencoder-based methods. STAGUE also reveals the regulatory genes that participate in these CCIs, including those enriched in neuropeptide signaling and receptor tyrosine kinase signaling pathways, thereby providing insights into the underlying biological processes.
从细胞图中衍生出的嵌入向量在探索空间转录组学(ST)数据集方面具有巨大潜力。然而,现有的方法依赖于由空间邻近性定义的图结构,这种结构不足以体现细胞 - 细胞相互作用(CCI)中固有的多样性。本研究引入了STAGUE,这是一个创新框架,可同时从ST数据中学习细胞图结构和低维嵌入向量。STAGUE采用图结构学习来参数化和优化细胞图邻接矩阵,从而生成可学习的图视图以进行有效的对比学习。导出的嵌入向量和细胞图提高了空间聚类的准确性,并有助于发现新的CCI。对86个真实和模拟的ST数据集进行的实验基准测试表明,STAGUE在聚类性能上优于15种比较方法。此外,STAGUE描绘了人类乳腺癌组织中的异质性,揭示了特定子区域中上皮 - 间充质转化和PI3K/AKT信号通路的激活。此外,与现有的基于图自动编码器的方法相比,STAGUE识别出的CCI与已确立的生物学知识具有更高的一致性。STAGUE还揭示了参与这些CCI的调控基因,包括那些在神经肽信号通路和受体酪氨酸激酶信号通路中富集的基因,从而为潜在的生物学过程提供了见解。