Suppr超能文献

用于传感的功能性催化纳米颗粒(纳米酶)。

Functional catalytic nanoparticles (nanozymes) for sensing.

机构信息

Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.

Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.

出版信息

Biosens Bioelectron. 2022 Dec 15;218:114768. doi: 10.1016/j.bios.2022.114768. Epub 2022 Oct 3.

Abstract

Nanoparticles exhibiting diverse shapes, high porosity and chemical stability reveal, upon appropriate chemical engineering, enzyme-like catalytic activities, "nanozymes", providing a plethora of nanomaterials for diverse applications. The present review article addresses the sensing applications of the catalytic functions of nanozymes consisting of metal nanoparticles, metal oxides, metal sulfides and cyanometallate nanoparticles, carbon-based nanomaterials and metal-organic-framework nanoparticles. The nanozymes emulate catalytic functions of oxidases or peroxidases and are employed as amplifying agents for sensing diverse analytes such as glucose, dopamine, NADH, thiols, phosphates and more. Moreover, the immobilization of nanozymes on electrodes provides versatile means to develop electrochemical sensing platforms. Different principles of the electrochemical sensing platforms, synthetic methodologies to deposit nanozymes on electrodes, and methods to establish electrical communication between the bulk conductive support and nanozyme particles are introduced. Electrochemical sensing platforms applying nanozyme-modified electrodes for the detection of analytes such as organophosphates, glucose and more are discussed. In particular, the application of nanozymes as amplifying labels for biosensor devices detecting proteins, DNA and microRNAs are addressed. Finally, the uses of nanozymes as functional constituents to design sense-and-treat systems are discussed. This is exemplified with the assembly of a bioreactor system for the sensing of glucose, the nanozyme-promoted generation of reactive oxygen species as cytotoxic agents towards cancer cells, and the autonomous nanozyme-based glucose-controlled release of insulin from nanocarrier devices. The future challenges in developing nanozyme-based sensors and sense-and-treat systems are presented.

摘要

纳米粒子具有多种形状、高孔隙率和化学稳定性,经过适当的化学工程处理后,表现出酶样的催化活性,被称为“纳米酶”,为各种应用提供了丰富的纳米材料。本文综述了由金属纳米粒子、金属氧化物、金属硫化物和氰基金属纳米粒子、碳基纳米材料和金属有机骨架纳米粒子组成的纳米酶的催化功能在传感应用方面的研究进展。纳米酶模拟氧化酶或过氧化物酶的催化功能,并被用作传感各种分析物(如葡萄糖、多巴胺、NADH、硫醇、磷酸盐等)的放大剂。此外,纳米酶在电极上的固定化提供了多种开发电化学传感平台的方法。本文介绍了不同的电化学传感平台原理、将纳米酶沉积在电极上的合成方法以及在块状导电支撑体和纳米酶颗粒之间建立电通信的方法。讨论了应用纳米酶修饰电极检测分析物(如有机磷、葡萄糖等)的电化学传感平台。特别讨论了纳米酶作为生物传感器设备检测蛋白质、DNA 和 microRNA 的放大标签的应用。最后,讨论了将纳米酶用作设计感测和治疗系统的功能成分的应用。本文以组装用于葡萄糖感测的生物反应器系统、纳米酶促进生成作为细胞毒性剂的活性氧物质以杀伤癌细胞以及基于纳米酶的自主葡萄糖控制胰岛素从纳米载体装置释放为例进行了说明。本文还提出了开发基于纳米酶的传感器和感测与治疗系统的未来挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验