Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
Gastric Cancer. 2023 Mar;26(2):264-274. doi: 10.1007/s10120-022-01347-0. Epub 2022 Oct 20.
BACKGROUND: Computational pathology uses deep learning (DL) to extract biomarkers from routine pathology slides. Large multicentric datasets improve performance, but such datasets are scarce for gastric cancer. This limitation could be overcome by Swarm Learning (SL). METHODS: Here, we report the results of a multicentric retrospective study of SL for prediction of molecular biomarkers in gastric cancer. We collected tissue samples with known microsatellite instability (MSI) and Epstein-Barr Virus (EBV) status from four patient cohorts from Switzerland, Germany, the UK and the USA, storing each dataset on a physically separate computer. RESULTS: On an external validation cohort, the SL-based classifier reached an area under the receiver operating curve (AUROC) of 0.8092 (± 0.0132) for MSI prediction and 0.8372 (± 0.0179) for EBV prediction. The centralized model, which was trained on all datasets on a single computer, reached a similar performance. CONCLUSIONS: Our findings demonstrate the feasibility of SL-based molecular biomarkers in gastric cancer. In the future, SL could be used for collaborative training and, thus, improve the performance of these biomarkers. This may ultimately result in clinical-grade performance and generalizability.
背景:计算病理学使用深度学习(DL)从常规病理学幻灯片中提取生物标志物。大型多中心数据集可提高性能,但胃癌的此类数据集稀缺。通过群集学习(SL)可以克服这一限制。
方法:在这里,我们报告了一项用于预测胃癌分子生物标志物的 SL 多中心回顾性研究的结果。我们从瑞士、德国、英国和美国的四个患者队列中收集了已知微卫星不稳定性(MSI)和 Epstein-Barr 病毒(EBV)状态的组织样本,并将每个数据集存储在物理上独立的计算机上。
结果:在外部验证队列中,基于 SL 的分类器在 MSI 预测方面达到了 0.8092(±0.0132)的接收器工作特征曲线(AUROC),在 EBV 预测方面达到了 0.8372(±0.0179)。在一台计算机上对所有数据集进行训练的集中式模型也达到了类似的性能。
结论:我们的研究结果证明了基于 SL 的胃癌分子生物标志物的可行性。未来,SL 可用于协作培训,从而提高这些生物标志物的性能。这最终可能导致达到临床级别的性能和通用性。
Cancer Biol Med. 2025-3-24
Cancer Cell Int. 2025-3-21
Front Oncol. 2024-10-28
NPJ Precis Oncol. 2023-3-28
Med Image Anal. 2023-1
Nat Commun. 2022-9-29
Clin Cancer Res. 2023-1-17
Cancer Cell. 2022-8-8