文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于群集学习的胃癌病理图像中基因异常的直接预测。

Direct prediction of genetic aberrations from pathology images in gastric cancer with swarm learning.

机构信息

Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.

Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

出版信息

Gastric Cancer. 2023 Mar;26(2):264-274. doi: 10.1007/s10120-022-01347-0. Epub 2022 Oct 20.


DOI:10.1007/s10120-022-01347-0
PMID:36264524
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9950158/
Abstract

BACKGROUND: Computational pathology uses deep learning (DL) to extract biomarkers from routine pathology slides. Large multicentric datasets improve performance, but such datasets are scarce for gastric cancer. This limitation could be overcome by Swarm Learning (SL). METHODS: Here, we report the results of a multicentric retrospective study of SL for prediction of molecular biomarkers in gastric cancer. We collected tissue samples with known microsatellite instability (MSI) and Epstein-Barr Virus (EBV) status from four patient cohorts from Switzerland, Germany, the UK and the USA, storing each dataset on a physically separate computer. RESULTS: On an external validation cohort, the SL-based classifier reached an area under the receiver operating curve (AUROC) of 0.8092 (± 0.0132) for MSI prediction and 0.8372 (± 0.0179) for EBV prediction. The centralized model, which was trained on all datasets on a single computer, reached a similar performance. CONCLUSIONS: Our findings demonstrate the feasibility of SL-based molecular biomarkers in gastric cancer. In the future, SL could be used for collaborative training and, thus, improve the performance of these biomarkers. This may ultimately result in clinical-grade performance and generalizability.

摘要

背景:计算病理学使用深度学习(DL)从常规病理学幻灯片中提取生物标志物。大型多中心数据集可提高性能,但胃癌的此类数据集稀缺。通过群集学习(SL)可以克服这一限制。

方法:在这里,我们报告了一项用于预测胃癌分子生物标志物的 SL 多中心回顾性研究的结果。我们从瑞士、德国、英国和美国的四个患者队列中收集了已知微卫星不稳定性(MSI)和 Epstein-Barr 病毒(EBV)状态的组织样本,并将每个数据集存储在物理上独立的计算机上。

结果:在外部验证队列中,基于 SL 的分类器在 MSI 预测方面达到了 0.8092(±0.0132)的接收器工作特征曲线(AUROC),在 EBV 预测方面达到了 0.8372(±0.0179)。在一台计算机上对所有数据集进行训练的集中式模型也达到了类似的性能。

结论:我们的研究结果证明了基于 SL 的胃癌分子生物标志物的可行性。未来,SL 可用于协作培训,从而提高这些生物标志物的性能。这最终可能导致达到临床级别的性能和通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5579/9950158/a821150af770/10120_2022_1347_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5579/9950158/4f190d9f4cdd/10120_2022_1347_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5579/9950158/e504e25411b4/10120_2022_1347_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5579/9950158/a821150af770/10120_2022_1347_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5579/9950158/4f190d9f4cdd/10120_2022_1347_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5579/9950158/e504e25411b4/10120_2022_1347_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5579/9950158/a821150af770/10120_2022_1347_Fig3_HTML.jpg

相似文献

[1]
Direct prediction of genetic aberrations from pathology images in gastric cancer with swarm learning.

Gastric Cancer. 2023-3

[2]
Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study.

Lancet Digit Health. 2021-10

[3]
Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer.

Int J Cancer. 2021-8-1

[4]
Subtraction of Epstein-Barr virus and microsatellite instability genotypes from the Lauren histotypes: Combined molecular and histologic subtyping with clinicopathological and prognostic significance validated in a cohort of 1,248 cases.

Int J Cancer. 2019-3-1

[5]
Single Patient Classifier Assay, Microsatellite Instability, and Epstein-Barr Virus Status Predict Clinical Outcomes in Stage II/III Gastric Cancer: Results from CLASSIC Trial.

Yonsei Med J. 2019-2

[6]
Prediction of Epstein-Barr Virus Status in Gastric Cancer Biopsy Specimens Using a Deep Learning Algorithm.

JAMA Netw Open. 2022-10-3

[7]
Detecting immunotherapy-sensitive subtype in gastric cancer using histologic image-based deep learning.

Sci Rep. 2021-11-22

[8]
A deep learning model and human-machine fusion for prediction of EBV-associated gastric cancer from histopathology.

Nat Commun. 2022-5-19

[9]
Clinicopathological and prognostic features of Epstein-Barr virus infection, microsatellite instability, and PD-L1 expression in gastric cancer.

J Surg Oncol. 2018-4

[10]
The Transcriptomic Landscape of Gastric Cancer: Insights into Epstein-Barr Virus Infected and Microsatellite Unstable Tumors.

Int J Mol Sci. 2018-7-17

引用本文的文献

[1]
Swarm learning network for privacy-preserving and collaborative deep learning assisted diagnosis of fracture: a multi-center diagnostic study.

Front Med (Lausanne). 2025-7-3

[2]
Beyond Biomarkers: Machine Learning-Driven Multiomics for Personalized Medicine in Gastric Cancer.

J Pers Med. 2025-4-24

[3]
Deep Gaussian process with uncertainty estimation for microsatellite instability and immunotherapy response prediction from histology.

NPJ Digit Med. 2025-5-19

[4]
The current landscape of artificial intelligence in computational histopathology for cancer diagnosis.

Discov Oncol. 2025-4-1

[5]
Advances and challenges in gastric cancer testing: the role of biomarkers.

Cancer Biol Med. 2025-3-24

[6]
The artificial intelligence revolution in gastric cancer management: clinical applications.

Cancer Cell Int. 2025-3-21

[7]
Targeting amino acid metabolism to inhibit gastric cancer progression and promote anti-tumor immunity: a review.

Front Immunol. 2025-2-13

[8]
Swarm learning with weak supervision enables automatic breast cancer detection in magnetic resonance imaging.

Commun Med (Lond). 2025-2-6

[9]
SwarmMAP: Swarm Learning for Decentralized Cell Type Annotation in Single Cell Sequencing Data.

bioRxiv. 2025-1-16

[10]
Applications of artificial intelligence in digital pathology for gastric cancer.

Front Oncol. 2024-10-28

本文引用的文献

[1]
Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology.

NPJ Precis Oncol. 2023-3-28

[2]
RetCCL: Clustering-guided contrastive learning for whole-slide image retrieval.

Med Image Anal. 2023-1

[3]
Adversarial attacks and adversarial robustness in computational pathology.

Nat Commun. 2022-9-29

[4]
Artificial intelligence in histopathology: enhancing cancer research and clinical oncology.

Nat Cancer. 2022-9

[5]
Facts and Hopes on the Use of Artificial Intelligence for Predictive Immunotherapy Biomarkers in Cancer.

Clin Cancer Res. 2023-1-17

[6]
Pan-cancer integrative histology-genomic analysis via multimodal deep learning.

Cancer Cell. 2022-8-8

[7]
DeepSMILE: Contrastive self-supervised pre-training benefits MSI and HRD classification directly from H&E whole-slide images in colorectal and breast cancer.

Med Image Anal. 2022-7

[8]
Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology.

Med Image Anal. 2022-7

[9]
Swarm learning for decentralized artificial intelligence in cancer histopathology.

Nat Med. 2022-6

[10]
The future of artificial intelligence in digital pathology - results of a survey across stakeholder groups.

Histopathology. 2022-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索