文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

群体学习在癌症病理组织学中的去中心化人工智能应用。

Swarm learning for decentralized artificial intelligence in cancer histopathology.

机构信息

Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.

Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.

出版信息

Nat Med. 2022 Jun;28(6):1232-1239. doi: 10.1038/s41591-022-01768-5. Epub 2022 Apr 25.


DOI:10.1038/s41591-022-01768-5
PMID:35469069
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9205774/
Abstract

Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer.

摘要

人工智能 (AI) 可以直接从常规组织病理学切片预测分子改变的存在。然而,训练强大的 AI 系统需要大型数据集,而数据收集面临实际、伦理和法律障碍。这些障碍可以通过群体学习 (SL) 来克服,合作伙伴可以在避免数据传输和垄断数据治理的情况下共同训练 AI 模型。在这里,我们展示了在来自 5000 多名患者的千兆像素组织病理学图像的大型、多中心数据集成功使用 SL。我们表明,使用 SL 训练的 AI 模型可以直接从结直肠癌的苏木精和伊红 (H&E) 染色病理切片预测 BRAF 突变状态和微卫星不稳定性。我们在来自北爱尔兰、德国和美国的三个患者队列上训练 AI 模型,并在来自英国的两个独立数据集上验证预测性能。我们的数据表明,SL 训练的 AI 模型优于大多数本地训练的模型,并且与在合并数据集上训练的模型表现相当。此外,我们表明基于 SL 的 AI 模型具有数据效率。将来,可以使用 SL 来训练任何组织病理学图像分析任务的分布式 AI 模型,从而无需数据传输。

相似文献

[1]
Swarm learning for decentralized artificial intelligence in cancer histopathology.

Nat Med. 2022-6

[2]
Encrypted federated learning for secure decentralized collaboration in cancer image analysis.

Med Image Anal. 2024-2

[3]
Automated curation of large-scale cancer histopathology image datasets using deep learning.

Histopathology. 2024-6

[4]
The utility of color normalization for AI-based diagnosis of hematoxylin and eosin-stained pathology images.

J Pathol. 2022-1

[5]
Direct prediction of genetic aberrations from pathology images in gastric cancer with swarm learning.

Gastric Cancer. 2023-3

[6]
Revolutionizing Digital Pathology With the Power of Generative Artificial Intelligence and Foundation Models.

Lab Invest. 2023-11

[7]
Automatic Classification of Histopathology Images across Multiple Cancers Based on Heterogeneous Transfer Learning.

Diagnostics (Basel). 2023-3-28

[8]
Automated annotations of epithelial cells and stroma in hematoxylin-eosin-stained whole-slide images using cytokeratin re-staining.

J Pathol Clin Res. 2022-3

[9]
Artificial Intelligence Models for the Detection of Microsatellite Instability from Whole-Slide Imaging of Colorectal Cancer.

Diagnostics (Basel). 2024-7-25

[10]
An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study.

Lancet Digit Health. 2020-8

引用本文的文献

[1]
Enhanced metastasis risk prediction in cutaneous squamous cell carcinoma using deep learning and computational histopathology.

NPJ Precis Oncol. 2025-9-2

[2]
Spatial Transcriptomics Decodes Breast Cancer Microenvironment Heterogeneity: From Multidimensional Dynamic Profiling to Precision Therapy Blueprint Construction.

Biomolecules. 2025-7-24

[3]
Hierarchical Active Learning with Label Proportions on Data Regions.

IEEE Trans Knowl Data Eng. 2024-12

[4]
Swarm learning network for privacy-preserving and collaborative deep learning assisted diagnosis of fracture: a multi-center diagnostic study.

Front Med (Lausanne). 2025-7-3

[5]
AI-Driven Transcriptome Prediction in Human Pathology: From Molecular Insights to Clinical Applications.

Biology (Basel). 2025-6-4

[6]
Few shot learning for phenotype-driven diagnosis of patients with rare genetic diseases.

NPJ Digit Med. 2025-6-20

[7]
Challenges and Future Perspectives for Artificial Intelligence in Hepatology: Breaking Barriers for Better Care.

J Clin Exp Hepatol. 2025

[8]
Computational pathology for breast cancer: Where do we stand for prognostic applications?

Breast. 2025-6

[9]
The current landscape of artificial intelligence in computational histopathology for cancer diagnosis.

Discov Oncol. 2025-4-1

[10]
Integrating blockchain technology with artificial intelligence for the diagnosis of tibial plateau fractures.

Eur J Trauma Emerg Surg. 2025-2-21

本文引用的文献

[1]
Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis.

Nat Cancer. 2020-8

[2]
Federated learning for computational pathology on gigapixel whole slide images.

Med Image Anal. 2022-2

[3]
Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study.

Lancet Digit Health. 2021-12

[4]
Harnessing multimodal data integration to advance precision oncology.

Nat Rev Cancer. 2022-2

[5]
Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology.

J Pathol. 2022-1

[6]
Artificial intelligence in cancer research, diagnosis and therapy.

Nat Rev Cancer. 2021-12

[7]
Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study.

Lancet Digit Health. 2021-10

[8]
AI in medicine must be explainable.

Nat Med. 2021-8

[9]
The impact of site-specific digital histology signatures on deep learning model accuracy and bias.

Nat Commun. 2021-7-20

[10]
Synthetic data in machine learning for medicine and healthcare.

Nat Biomed Eng. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索