Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
Nat Med. 2022 Jun;28(6):1232-1239. doi: 10.1038/s41591-022-01768-5. Epub 2022 Apr 25.
Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer.
人工智能 (AI) 可以直接从常规组织病理学切片预测分子改变的存在。然而,训练强大的 AI 系统需要大型数据集,而数据收集面临实际、伦理和法律障碍。这些障碍可以通过群体学习 (SL) 来克服,合作伙伴可以在避免数据传输和垄断数据治理的情况下共同训练 AI 模型。在这里,我们展示了在来自 5000 多名患者的千兆像素组织病理学图像的大型、多中心数据集成功使用 SL。我们表明,使用 SL 训练的 AI 模型可以直接从结直肠癌的苏木精和伊红 (H&E) 染色病理切片预测 BRAF 突变状态和微卫星不稳定性。我们在来自北爱尔兰、德国和美国的三个患者队列上训练 AI 模型,并在来自英国的两个独立数据集上验证预测性能。我们的数据表明,SL 训练的 AI 模型优于大多数本地训练的模型,并且与在合并数据集上训练的模型表现相当。此外,我们表明基于 SL 的 AI 模型具有数据效率。将来,可以使用 SL 来训练任何组织病理学图像分析任务的分布式 AI 模型,从而无需数据传输。
Diagnostics (Basel). 2023-3-28
IEEE Trans Knowl Data Eng. 2024-12
NPJ Digit Med. 2025-6-20
Eur J Trauma Emerg Surg. 2025-2-21
Med Image Anal. 2022-2
Nat Rev Cancer. 2022-2
Nat Rev Cancer. 2021-12
Nat Med. 2021-8
Nat Biomed Eng. 2021-6