Redaelli Elena, Grasa Jorge, Calvo Begoña, Rodriguez Matas Jose Felix, Luraghi Giulia
Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
Centro de Investigación Biomecánica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain.
Front Bioeng Biotechnol. 2022 Oct 4;10:981665. doi: 10.3389/fbioe.2022.981665. eCollection 2022.
Understanding the corneal mechanical properties has great importance in the study of corneal pathologies and the prediction of refractive surgery outcomes. Non-Contact Tonometry (NCT) is a non-invasive diagnostic tool intended to characterize the corneal tissue response by applying a defined air-pulse. The biomarkers inferred from this test can only be considered as indicators of the global biomechanical behaviour rather than the intrinsic biomechanical properties of the corneal tissue. A possibility to isolate the mechanical response of the corneal tissue is the use of an inverse finite element method, which is based on accurate and reliable modelling. Since a detailed methodology is still missing in the literature, this paper aims to construct a high-fidelity finite-element model of an idealized 3D eye for NCT. A fluid-structure interaction (FSI) simulation is developed to virtually apply a defined air-pulse to a 3D idealized eye model comprising cornea, limbus, sclera, lens and humors. Then, a sensitivity analysis is performed to examine the influence of the intraocular pressure (IOP) and the structural material parameters on three biomarkers associated with corneal deformation. The analysis reveals the requirements for the study linked to the correct reproduction of three main aspects: the air pressure over the cornea, the biomechanical properties of the tissues, and the IOP. The adoption of an FSI simulation is crucial to capture the correct air pressure profile over the cornea as a consequence of the air-jet. Regarding the parts of the eye, an anisotropic material should be used for the cornea. An important component is the sclera: the stiffer the sclera, the lower the corneal deformation due to the air-puff. Finally, the fluid-like behavior of the humors should be considered in order to account for the correct variation of the IOP during the test which will, otherwise, remain constant. The development of a strong FSI tool amenable to model coupled structures and fluids provides the basis to find the biomechanical properties of the corneal tissue .
了解角膜的力学特性对于角膜病变的研究以及屈光手术结果的预测具有重要意义。非接触眼压计(NCT)是一种非侵入性诊断工具,旨在通过施加确定的空气脉冲来表征角膜组织的反应。从该测试推断出的生物标志物只能被视为整体生物力学行为的指标,而非角膜组织的固有生物力学特性。分离角膜组织力学反应的一种可能性是使用基于精确可靠建模的逆有限元方法。由于文献中仍缺少详细的方法,本文旨在构建一个用于NCT的理想化三维眼睛的高保真有限元模型。开发了一种流固耦合(FSI)模拟,以虚拟方式将确定的空气脉冲应用于包含角膜、角膜缘、巩膜、晶状体和房水的三维理想化眼睛模型。然后,进行敏感性分析,以检查眼内压(IOP)和结构材料参数对与角膜变形相关的三种生物标志物的影响。分析揭示了与三个主要方面的正确再现相关的研究要求:角膜上的气压、组织的生物力学特性和IOP。由于空气喷射,采用FSI模拟对于捕获角膜上正确的气压分布至关重要。关于眼睛的各个部分,角膜应使用各向异性材料。一个重要的组成部分是巩膜:巩膜越硬,由于吹气导致的角膜变形越小。最后,应考虑房水的流体样行为,以便考虑测试期间IOP的正确变化,否则IOP将保持恒定。开发一种适用于模拟耦合结构和流体的强大FSI工具为找到角膜组织的生物力学特性提供了基础。