Suppr超能文献

一种与氧化应激相关的lncRNAs新型风险模型可预测膀胱癌预后。

A Novel Risk Model for lncRNAs Associated with Oxidative Stress Predicts Prognosis of Bladder Cancer.

作者信息

Feng Lixiang, Yang Kang, Kuang Qihui, Peng Min, Li Lili, Luo Pengcheng

机构信息

Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan 430060, China.

Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China.

出版信息

J Oncol. 2022 Oct 11;2022:8408328. doi: 10.1155/2022/8408328. eCollection 2022.

Abstract

BACKGROUND

Oxidative stress (OS) reactions are closely related to the development and progression of bladder cancer (BCa). This project aimed to identify new potential biomarkers to predict the prognosis of BCa and improve immunotherapy.

METHODS

We downloaded transcriptomic information and clinical data on BCa from The Cancer Genome Atlas (TCGA). Screening for OS genes was statistically different between tumor and adjacent normal tissue. A coexpression analysis between lncRNAs and differentially expressed OS genes was performed to identify OS-related lncRNAs. Then, differentially expressed oxidative stress lncRNAs (DEOSlncRNAs) between tumors and normal tissues were identified. Univariate/multivariate Cox regression analysis was performed to select the lncRNAs for risk assessment. LASSO analysis was conducted to establish a prognostic model. The prognostic risk model could accurately predict BCa patient prognosis and reveal a close correlation with clinicopathological features. We analyzed the principal component analysis (PCA), immune microenvironment, and half-maximal inhibitory concentration (IC50) in the risk groups.

RESULTS

We constructed a model containing eight DEOSlncRNAs (AC021321.1, AC068196.1, AC008750.1, SETBP1-DT, AL590617.2, THUMPD3-AS1, AC112721.1, and NR4A1AS). The prognostic risk model showed better results in predicting the prognosis of BCa patients and was strongly correlated with clinicopathological characteristics. We found great agreement between the calibration plots and prognostic predictions in this model. The areas under the receiver operating characteristic (ROC) curve (AUCs) at 1, 3, and 5 years were 0.792, 0.804, and 0.843, respectively. This model also showed good predictive ability regarding the tumor microenvironment and tumor mutation burden. In addition, the high-risk group was more sensitive to eight therapeutic agents, and the low-risk group was more responsive to five therapeutic agents. Sixteen immune checkpoints were significantly different between the two risk groups.

CONCLUSION

Our eight DEOSlncRNA risk models provide new insights into predicting prognosis and clinical progression in BCa patients.

摘要

背景

氧化应激(OS)反应与膀胱癌(BCa)的发生发展密切相关。本项目旨在寻找新的潜在生物标志物,以预测BCa的预后并改善免疫治疗。

方法

我们从癌症基因组图谱(TCGA)下载了BCa的转录组信息和临床数据。筛选肿瘤组织与癌旁正常组织中存在统计学差异的OS基因。对lncRNA与差异表达的OS基因进行共表达分析,以鉴定与OS相关的lncRNA。然后,确定肿瘤组织与正常组织之间差异表达的氧化应激lncRNA(DEOSlncRNA)。进行单因素/多因素Cox回归分析以选择用于风险评估的lncRNA。进行LASSO分析以建立预后模型。该预后风险模型可以准确预测BCa患者的预后,并揭示其与临床病理特征的密切相关性。我们分析了风险组中的主成分分析(PCA)、免疫微环境和半数抑制浓度(IC50)。

结果

我们构建了一个包含8个DEOSlncRNA的模型(AC021321.1、AC068196.1、AC008750.1、SETBP1-DT、AL590617.2、THUMPD3-AS1、AC112721.1和NR4A1AS)。该预后风险模型在预测BCa患者预后方面表现出更好的效果,并且与临床病理特征密切相关。我们发现该模型的校准图与预后预测之间具有高度一致性。1年、3年和5年的受试者工作特征(ROC)曲线下面积(AUC)分别为0.792、0.804和0.843。该模型在肿瘤微环境和肿瘤突变负荷方面也显示出良好的预测能力。此外,高危组对8种治疗药物更敏感,低危组对5种治疗药物更敏感。两个风险组之间有16个免疫检查点存在显著差异。

结论

我们的8个DEOSlncRNA风险模型为预测BCa患者的预后和临床进展提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c70/9578793/368fc4b9e7e3/JO2022-8408328.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验