Suppr超能文献

自动勾画靶区中的随机离群值对胶质母细胞瘤放疗计划的影响。

Impact of random outliers in auto-segmented targets on radiotherapy treatment plans for glioblastoma.

机构信息

Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.

ARTORG Center for Biomedical Research, University of Bern, Bern, Switzerland.

出版信息

Radiat Oncol. 2022 Oct 22;17(1):170. doi: 10.1186/s13014-022-02137-9.

Abstract

AIMS

To save time and have more consistent contours, fully automatic segmentation of targets and organs at risk (OAR) is a valuable asset in radiotherapy. Though current deep learning (DL) based models are on par with manual contouring, they are not perfect and typical errors, as false positives, occur frequently and unpredictably. While it is possible to solve this for OARs, it is far from straightforward for target structures. In order to tackle this problem, in this study, we analyzed the occurrence and the possible dose effects of automated delineation outliers.

METHODS

First, a set of controlled experiments on synthetically generated outliers on the CT of a glioblastoma (GBM) patient was performed. We analyzed the dosimetric impact on outliers with different location, shape, absolute size and relative size to the main target, resulting in 61 simulated scenarios. Second, multiple segmentation models where trained on a U-Net network based on 80 training sets consisting of GBM cases with annotated gross tumor volume (GTV) and edema structures. On 20 test cases, 5 different trained models and a majority voting method were used to predict the GTV and edema. The amount of outliers on the predictions were determined, as well as their size and distance from the actual target.

RESULTS

We found that plans containing outliers result in an increased dose to healthy brain tissue. The extent of the dose effect is dependent on the relative size, location and the distance to the main targets and involved OARs. Generally, the larger the absolute outlier volume and the distance to the target the higher the potential dose effect. For 120 predicted GTV and edema structures, we found 1887 outliers. After construction of the planning treatment volume (PTV), 137 outliers remained with a mean distance to the target of 38.5 ± 5.0 mm and a mean size of 1010.8 ± 95.6 mm. We also found that majority voting of DL results is capable to reduce outliers.

CONCLUSIONS

This study shows that there is a severe risk of false positive outliers in current DL predictions of target structures. Additionally, these errors will have an evident detrimental impact on the dose and therefore could affect treatment outcome.

摘要

目的

为了节省时间并获得更一致的轮廓,目标和危及器官(OAR)的全自动分割是放射治疗的宝贵资产。尽管当前基于深度学习(DL)的模型与手动轮廓相当,但它们并不完美,并且经常且不可预测地出现典型错误,例如假阳性。虽然可以解决 OAR 的问题,但对于目标结构来说,这绝非易事。为了解决这个问题,在这项研究中,我们分析了自动勾画异常值的发生和可能的剂量影响。

方法

首先,在胶质母细胞瘤(GBM)患者的 CT 上进行了一组针对合成异常值的对照实验。我们分析了不同位置,形状,绝对大小和相对大小对主要目标的异常值的剂量影响,共产生了 61 个模拟场景。其次,在基于 80 个包含有标注的大体肿瘤体积(GTV)和水肿结构的 GBM 病例的 U-Net 网络上,对多个分割模型进行了训练。在 20 个测试病例上,使用 5 种不同的训练模型和多数投票方法来预测 GTV 和水肿。确定了预测中的异常值的数量,以及它们的大小和与实际目标的距离。

结果

我们发现,包含异常值的计划会导致健康脑组织的剂量增加。剂量效应的程度取决于相对大小,位置以及与主要目标和相关 OAR 的距离。通常,异常值的绝对体积越大,与目标的距离越远,潜在的剂量效应就越高。在预测的 120 个 GTV 和水肿结构中,我们发现了 1887 个异常值。在构建计划治疗体积(PTV)后,仍有 137 个异常值,其平均距离目标为 38.5±5.0mm,平均大小为 1010.8±95.6mm。我们还发现,DL 结果的多数投票可以减少异常值。

结论

这项研究表明,当前的目标结构的 DL 预测中存在严重的假阳性异常值风险。此外,这些错误将对剂量产生明显的不利影响,从而可能影响治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4771/9587574/1865ce8d70d6/13014_2022_2137_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验