Suppr超能文献

从控制论的角度看机械生物系统如何驱动细胞行为。

How the mechanobiome drives cell behavior, viewed through the lens of control theory.

机构信息

Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, M 21205, USA.

出版信息

J Cell Sci. 2019 Sep 2;132(17):jcs234476. doi: 10.1242/jcs.234476.

Abstract

Cells have evolved sophisticated systems that integrate internal and external inputs to coordinate cell shape changes during processes, such as development, cell identity determination, and cell and tissue homeostasis. Cellular shape-change events are driven by the mechanobiome, the network of macromolecules that allows cells to generate, sense and respond to externally imposed and internally generated forces. Together, these components build the cellular contractility network, which is governed by a control system. Proteins, such as non-muscle myosin II, function as both sensors and actuators, which then link to scaffolding proteins, transcription factors and metabolic proteins to create feedback loops that generate the foundational mechanical properties of the cell and modulate cellular behaviors. In this Review, we highlight proteins that establish and maintain the setpoint, or baseline, for the control system and explore the feedback loops that integrate different cellular processes with cell mechanics. Uncovering the genetic, biophysical and biochemical interactions between these molecular components allows us to apply concepts from control theory to provide a systems-level understanding of cellular processes. Importantly, the actomyosin network has emerged as more than simply a 'downstream' effector of linear signaling pathways. Instead, it is also a significant driver of cellular processes traditionally considered to be 'upstream'.

摘要

细胞已经进化出复杂的系统,可整合内部和外部输入,以协调发育、细胞身份确定以及细胞和组织动态平衡等过程中的细胞形状变化。细胞形状变化事件由机械生物系统驱动,该系统是允许细胞产生、感知和响应外部施加和内部产生的力的大分子网络。这些成分共同构成了细胞收缩性网络,由控制系统控制。蛋白质,如非肌肉肌球蛋白 II,既作为传感器又作为执行器,然后与支架蛋白、转录因子和代谢蛋白连接,形成反馈回路,从而产生细胞的基础机械特性并调节细胞行为。在这篇综述中,我们强调了那些建立和维持控制系统设定点或基线的蛋白质,并探讨了将不同的细胞过程与细胞力学整合的反馈回路。揭示这些分子成分之间的遗传、生物物理和生化相互作用,使我们能够应用控制理论的概念,从系统层面理解细胞过程。重要的是,肌动球蛋白网络不仅是线性信号通路的“下游”效应器。相反,它也是传统上被认为是“上游”的细胞过程的重要驱动因素。

相似文献

1
How the mechanobiome drives cell behavior, viewed through the lens of control theory.
J Cell Sci. 2019 Sep 2;132(17):jcs234476. doi: 10.1242/jcs.234476.
2
Mechanochemical Signaling Directs Cell-Shape Change.
Biophys J. 2017 Jan 24;112(2):207-214. doi: 10.1016/j.bpj.2016.12.015.
3
Microfilaments in cellular and developmental processes.
Science. 1971 Jan 15;171(3967):135-43. doi: 10.1126/science.171.3967.135.
4
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
5
folded gastrulation, cell shape change and the control of myosin localization.
Development. 2005 Sep;132(18):4165-78. doi: 10.1242/dev.01938.
6
Stresses at the cell surface during animal cell morphogenesis.
Curr Biol. 2014 May 19;24(10):R484-94. doi: 10.1016/j.cub.2014.03.059.
7
Mechanical stress and network structure drive protein dynamics during cytokinesis.
Curr Biol. 2015 Mar 2;25(5):663-70. doi: 10.1016/j.cub.2015.01.025. Epub 2015 Feb 19.
8
Cell-sized liposomes reveal how actomyosin cortical tension drives shape change.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16456-61. doi: 10.1073/pnas.1221524110. Epub 2013 Sep 24.
9
Acto-myosin based response to stiffness and rigidity sensing.
Cell Adh Migr. 2011 Jan-Feb;5(1):16-9. doi: 10.4161/cam.5.1.13281. Epub 2011 Jan 1.
10
Precise Tuning of Cortical Contractility Regulates Cell Shape during Cytokinesis.
Cell Rep. 2020 Apr 7;31(1):107477. doi: 10.1016/j.celrep.2020.03.041.

引用本文的文献

1
Ras-mediated dynamic and biphasic regulation of cell migration.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2503847122. doi: 10.1073/pnas.2503847122. Epub 2025 Jul 22.
2
β-adrenergic signaling modulates breast cancer cell mechanical behaviors through a RhoA-ROCK-myosin II axis.
iScience. 2025 May 15;28(6):112676. doi: 10.1016/j.isci.2025.112676. eCollection 2025 Jun 20.
3
Structure, regulation, and mechanisms of nonmuscle myosin-2.
Cell Mol Life Sci. 2024 Jun 15;81(1):263. doi: 10.1007/s00018-024-05264-6.
4
Pan-cancer and single-cell analysis of actin cytoskeleton genes related to disulfidptosis.
Open Med (Wars). 2024 Mar 30;19(1):20240929. doi: 10.1515/med-2024-0929. eCollection 2024.
5
Particle-based model of mechanosensory contractility kit assembly.
Biophys J. 2022 Dec 6;121(23):4600-4614. doi: 10.1016/j.bpj.2022.10.031. Epub 2022 Oct 22.
6
The lectin Discoidin I acts in the cytoplasm to help assemble the contractile machinery.
J Cell Biol. 2022 Nov 7;221(11). doi: 10.1083/jcb.202202063. Epub 2022 Sep 27.
7
Will microfluidics enable functionally integrated biohybrid robots?
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2200741119. doi: 10.1073/pnas.2200741119. Epub 2022 Aug 24.
8
Cell Death by Entosis: Triggers, Molecular Mechanisms and Clinical Significance.
Int J Mol Sci. 2022 Apr 30;23(9):4985. doi: 10.3390/ijms23094985.
9
Cancer as a biophysical disease: Targeting the mechanical-adaptability program.
Biophys J. 2022 Oct 4;121(19):3573-3585. doi: 10.1016/j.bpj.2022.04.039. Epub 2022 May 3.
10
Quantitative mapping of keratin networks in 3D.
Elife. 2022 Feb 18;11:e75894. doi: 10.7554/eLife.75894.

本文引用的文献

1
Targeting Mechanoresponsive Proteins in Pancreatic Cancer: 4-Hydroxyacetophenone Blocks Dissemination and Invasion by Activating MYH14.
Cancer Res. 2019 Sep 15;79(18):4665-4678. doi: 10.1158/0008-5472.CAN-18-3131. Epub 2019 Jul 29.
2
Meddling with myosin's mechanobiology in cancer.
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15322-15323. doi: 10.1073/pnas.1909995116. Epub 2019 Jul 11.
3
Myosin IIA suppresses glioblastoma development in a mechanically sensitive manner.
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15550-15559. doi: 10.1073/pnas.1902847116. Epub 2019 Jun 24.
4
Stoichiometry controls activity of phase-separated clusters of actin signaling proteins.
Science. 2019 Mar 8;363(6431):1093-1097. doi: 10.1126/science.aau6313.
5
The role of nucleocytoplasmic transport in mechanotransduction.
Exp Cell Res. 2019 Apr 15;377(1-2):86-93. doi: 10.1016/j.yexcr.2019.02.009. Epub 2019 Feb 13.
6
YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility.
J Cell Biol. 2019 Apr 1;218(4):1369-1389. doi: 10.1083/jcb.201806065. Epub 2019 Feb 8.
7
Type I myosins anchor actin assembly to the plasma membrane during clathrin-mediated endocytosis.
J Cell Biol. 2019 Apr 1;218(4):1138-1147. doi: 10.1083/jcb.201810005. Epub 2019 Jan 18.
8
Myosin IIB assembly state determines its mechanosensitive dynamics.
J Cell Biol. 2019 Mar 4;218(3):895-908. doi: 10.1083/jcb.201806058. Epub 2019 Jan 17.
9
Integrin activation by talin, kindlin and mechanical forces.
Nat Cell Biol. 2019 Jan;21(1):25-31. doi: 10.1038/s41556-018-0234-9. Epub 2019 Jan 2.
10
Mechanical forces in cell monolayers.
J Cell Sci. 2018 Dec 20;131(24):jcs218156. doi: 10.1242/jcs.218156.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验