Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands.
BIOPOLIS/CIBIO/ InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal.
PLoS One. 2022 Oct 26;17(10):e0276309. doi: 10.1371/journal.pone.0276309. eCollection 2022.
Here, we aimed to identify and characterize genomic regions that differ between Groningen White Headed (GWH) breed and other cattle, and in particular to identify candidate genes associated with coat color and/or eye-protective phenotypes. Firstly, whole genome sequences of 170 animals from eight breeds were used to evaluate the genetic structure of the GWH in relation to other cattle breeds by carrying out principal components and model-based clustering analyses. Secondly, the candidate genomic regions were identified by integrating the findings from: a) a genome-wide association study using GWH, other white headed breeds (Hereford and Simmental), and breeds with a non-white headed phenotype (Dutch Friesian, Deep Red, Meuse-Rhine-Yssel, Dutch Belted, and Holstein Friesian); b) scans for specific signatures of selection in GWH cattle by comparison with four other Dutch traditional breeds (Dutch Friesian, Deep Red, Meuse-Rhine-Yssel and Dutch Belted) and the commercial Holstein Friesian; and c) detection of candidate genes identified via these approaches. The alignment of the filtered reads to the reference genome (ARS-UCD1.2) resulted in a mean depth of coverage of 8.7X. After variant calling, the lowest number of breed-specific variants was detected in Holstein Friesian (148,213), and the largest in Deep Red (558,909). By integrating the results, we identified five genomic regions under selection on BTA4 (70.2-71.3 Mb), BTA5 (10.0-19.7 Mb), BTA20 (10.0-19.9 and 20.0-22.7 Mb), and BTA25 (0.5-9.2 Mb). These regions contain positional and functional candidate genes associated with retinal degeneration (e.g., CWC27 and CLUAP1), ultraviolet protection (e.g., ERCC8), and pigmentation (e.g. PDE4D) which are probably associated with the GWH specific pigmentation and/or eye-protective phenotypes, e.g. Ambilateral Circumocular Pigmentation (ACOP). Our results will assist in characterizing the molecular basis of GWH phenotypes and the biological implications of its adaptation.
在这里,我们旨在鉴定和描述格罗宁根白头(GWH)品种与其他牛之间不同的基因组区域,特别是鉴定与毛色和/或眼部保护表型相关的候选基因。首先,我们使用来自八个品种的 170 头动物的全基因组序列,通过进行主成分和基于模型的聚类分析,评估 GWH 与其他牛品种的遗传结构。其次,通过整合以下发现来确定候选基因组区域:a)使用 GWH、其他白头品种(赫里福德和西门塔尔)和非白头表型品种(荷兰弗里生、深红牛、默兹-莱茵-埃塞尔、荷兰带牛和荷斯坦弗里生)进行的全基因组关联研究;b)通过与其他四个荷兰传统品种(荷兰弗里生、深红牛、默兹-莱茵-埃塞尔和荷兰带牛)和商业荷斯坦弗里生进行比较,对 GWH 牛进行特定选择信号扫描;c)通过这些方法检测候选基因。过滤后的reads 与参考基因组(ARS-UCD1.2)对齐,得到平均覆盖深度为 8.7X。在进行变异调用后,在荷斯坦弗里生中检测到的品种特异性变异数量最少(148,213),在深红牛中检测到的品种特异性变异数量最多(558,909)。通过整合结果,我们在 BTA4(70.2-71.3 Mb)、BTA5(10.0-19.7 Mb)、BTA20(10.0-19.9 和 20.0-22.7 Mb)和 BTA25(0.5-9.2 Mb)上鉴定了五个受选择的基因组区域。这些区域包含与视网膜变性(例如,CWC27 和 CLUAP1)、紫外线保护(例如,ERCC8)和色素沉着(例如 PDE4D)相关的位置和功能候选基因,这些基因可能与 GWH 特定的色素沉着和/或眼部保护表型相关,例如双侧眼周色素沉着(ACOP)。我们的研究结果将有助于阐明 GWH 表型的分子基础及其适应的生物学意义。