Negm Ayman, Howlader Matiar M R, Belyakov Ilya, Bakr Mohamed, Ali Shirook, Irannejad Mehrdad, Yavuz Mustafa
Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
Department of Electronics and Communications Engineering, Cairo University, Giza 12613, Egypt.
Materials (Basel). 2022 Oct 18;15(20):7289. doi: 10.3390/ma15207289.
With the growing need for portable, compact, low-cost, and efficient biosensors, plasmonic materials hold the promise to meet this need owing to their label-free sensitivity and deep light-matter interaction that can go beyond the diffraction limit of light. In this review, we shed light on the main physical aspects of plasmonic interactions, highlight mainstream and future plasmonic materials including their merits and shortcomings, describe the backbone substrates for building plasmonic biosensors, and conclude with a brief discussion of the factors affecting plasmonic biosensing mechanisms. To do so, we first observe that 2D materials such as graphene and transition metal dichalcogenides play a major role in enhancing the sensitivity of nanoparticle-based plasmonic biosensors. Then, we identify that titanium nitride is a promising candidate for integrated applications with performance comparable to that of gold. Our study highlights the emerging role of polymer substrates in the design of future wearable and point-of-care devices. Finally, we summarize some technical and economic challenges that should be addressed for the mass adoption of plasmonic biosensors. We believe this review will be a guide in advancing the implementation of plasmonics-based integrated biosensors.
随着对便携式、紧凑、低成本且高效生物传感器的需求不断增长,等离子体材料因其无标记灵敏度以及能够超越光的衍射极限的深度光与物质相互作用而有望满足这一需求。在本综述中,我们阐述了等离子体相互作用的主要物理方面,突出了主流和未来的等离子体材料,包括它们的优缺点,描述了构建等离子体生物传感器的基础衬底,并最后简要讨论了影响等离子体生物传感机制的因素。为此,我们首先观察到二维材料(如石墨烯和过渡金属二硫属化物)在提高基于纳米颗粒的等离子体生物传感器的灵敏度方面发挥着主要作用。然后,我们确定氮化钛是具有与金相当性能的集成应用的有前途的候选材料。我们的研究突出了聚合物衬底在未来可穿戴和即时检测设备设计中的新兴作用。最后,我们总结了等离子体生物传感器大规模应用应解决的一些技术和经济挑战。我们相信本综述将为推进基于等离子体的集成生物传感器的实施提供指导。