González-García Yolanda, Meza-Contreras Juan C, Gutiérrez-Ortega José A, Manríquez-González Ricardo
Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, Carretera Guadalajara-Nogales, Las Agujas, Zapopan 45020, Jalisco, Mexico.
Departamento de Química, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Esq. Calzada Olímpica, Guadalajara 44430, Jalisco, Mexico.
Polymers (Basel). 2022 Oct 18;14(20):4388. doi: 10.3390/polym14204388.
Bacterial cellulose (BC) samples were obtained in a static culture of under the effect of a low-intensity magnetic field, UV light, NaCl, and chloramphenicol. The effect of such stimuli on the amount of BC produced and its production rate, specific area, pore volume, and pore diameter were evaluated. The polysaccharide production was enhanced 2.28-fold by exposing culture to UV light (366 nm) and 1.7-fold by adding chloramphenicol (0.25 mM) to the medium in comparison to BC control. All the stimuli triggered a decrease in the rate of BC biosynthesis. BC membranes were found to be mesoporous materials with an average pore diameter from 21.37 to 25.73 nm. BC produced under a magnetic field showed the lowest values of specific area and pore volume (2.55 m g and 0.024 cm g), while the BC synthesized in the presence of NaCl showed the highest (15.72 m g and 0.11 cm g). FTIR spectra of the BC samples also demonstrated changes related to structural order. The rehydration property in these BC samples is not mainly mediated by the crystallinity level or porosity. In summary, these results support that BC production, surface, and structural properties could be modified by manipulating the physical and chemical stimuli investigated.
细菌纤维素(BC)样品是在低强度磁场、紫外线、氯化钠和氯霉素作用下的静态培养中获得的。评估了这些刺激对BC产量及其生产率、比表面积、孔体积和孔径的影响。与BC对照相比,将培养物暴露于紫外线(366nm)下,多糖产量提高了2.28倍,向培养基中添加氯霉素(0.25mM),多糖产量提高了1.7倍。所有刺激均导致BC生物合成速率下降。发现BC膜是中孔材料,平均孔径为21.37至25.73nm。在磁场下产生的BC的比表面积和孔体积最低(2.55m²/g和0.024cm³/g),而在氯化钠存在下合成的BC的比表面积和孔体积最高(15.72m²/g和0.11cm³/g)。BC样品的FTIR光谱也显示出与结构有序性相关的变化。这些BC样品中的再水化特性并非主要由结晶度水平或孔隙率介导。总之,这些结果支持通过操纵所研究的物理和化学刺激可以改变BC的产量、表面和结构特性。