Suppr超能文献

对美国新冠肺炎模型表现的回顾性评估。

A retrospective assessment of COVID-19 model performance in the USA.

作者信息

Colonna Kyle J, Nane Gabriela F, Choma Ernani F, Cooke Roger M, Evans John S

机构信息

Environmental Health Department, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA.

Department of Mathematics, Delft University of Technology, Delft 2628 XE, The Netherlands.

出版信息

R Soc Open Sci. 2022 Oct 19;9(10):220021. doi: 10.1098/rsos.220021. eCollection 2022 Oct.

Abstract

Coronavirus disease 2019 (COVID-19) forecasts from over 100 models are readily available. However, little published information exists regarding the performance of their uncertainty estimates (i.e. probabilistic performance). To evaluate their probabilistic performance, we employ the classical model (CM), an established method typically used to validate expert opinion. In this analysis, we assess both the predictive and probabilistic performance of COVID-19 forecasting models during 2021. We also compare the performance of aggregated forecasts (i.e. ensembles) based on equal and CM performance-based weights to an established ensemble from the Centers for Disease Control and Prevention (CDC). Our analysis of forecasts of COVID-19 mortality from 22 individual models and three ensembles across 49 states indicates that-(i) good predictive performance does not imply good probabilistic performance, and vice versa; (ii) models often provide tight but inaccurate uncertainty estimates; (iii) most models perform worse than a naive baseline model; (iv) both the CDC and CM performance-weighted ensembles perform well; but (v) while the CDC ensemble was more informative, the CM ensemble was more statistically accurate across states. This study presents a worthwhile method for appropriately assessing the performance of probabilistic forecasts and can potentially improve both public health decision-making and COVID-19 modelling.

摘要

目前可以轻松获取来自100多个模型的2019冠状病毒病(COVID-19)预测。然而,关于这些模型不确定性估计的表现(即概率表现),公开信息却很少。为了评估它们的概率表现,我们采用了经典模型(CM),这是一种常用于验证专家意见的既定方法。在本分析中,我们评估了2021年期间COVID-19预测模型的预测表现和概率表现。我们还将基于均等权重和基于CM表现的权重的汇总预测(即集成模型)的表现,与美国疾病控制与预防中心(CDC)的一个既定集成模型进行比较。我们对49个州的22个单一模型和三个集成模型的COVID-19死亡率预测分析表明:(i)良好的预测表现并不意味着良好的概率表现,反之亦然;(ii)模型通常提供的不确定性估计范围窄但不准确;(iii)大多数模型的表现比一个简单的基线模型更差;(iv)CDC和基于CM表现加权的集成模型表现都很好;但(v)虽然CDC集成模型提供的信息更多,但CM集成模型在各州的统计准确性更高。本研究提出了一种适当地评估概率预测表现的有价值方法,并有可能改善公共卫生决策和COVID-19建模。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验