Suppr超能文献

基于迭代一周预测分布的季节性流感非机械预测。

Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions.

机构信息

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.

Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS Comput Biol. 2018 Jun 15;14(6):e1006134. doi: 10.1371/journal.pcbi.1006134. eCollection 2018 Jun.

Abstract

Accurate and reliable forecasts of seasonal epidemics of infectious disease can assist in the design of countermeasures and increase public awareness and preparedness. This article describes two main contributions we made recently toward this goal: a novel approach to probabilistic modeling of surveillance time series based on "delta densities", and an optimization scheme for combining output from multiple forecasting methods into an adaptively weighted ensemble. Delta densities describe the probability distribution of the change between one observation and the next, conditioned on available data; chaining together nonparametric estimates of these distributions yields a model for an entire trajectory. Corresponding distributional forecasts cover more observed events than alternatives that treat the whole season as a unit, and improve upon multiple evaluation metrics when extracting key targets of interest to public health officials. Adaptively weighted ensembles integrate the results of multiple forecasting methods, such as delta density, using weights that can change from situation to situation. We treat selection of optimal weightings across forecasting methods as a separate estimation task, and describe an estimation procedure based on optimizing cross-validation performance. We consider some details of the data generation process, including data revisions and holiday effects, both in the construction of these forecasting methods and when performing retrospective evaluation. The delta density method and an adaptively weighted ensemble of other forecasting methods each improve significantly on the next best ensemble component when applied separately, and achieve even better cross-validated performance when used in conjunction. We submitted real-time forecasts based on these contributions as part of CDC's 2015/2016 FluSight Collaborative Comparison. Among the fourteen submissions that season, this system was ranked by CDC as the most accurate.

摘要

准确可靠的传染病季节性流行预测有助于制定对策,并提高公众的意识和准备度。本文介绍了我们最近在这一目标上取得的两项主要贡献:一种基于“增量密度”的监测时间序列概率建模新方法,以及一种将多个预测方法的输出组合为自适应加权集成的优化方案。增量密度描述了在给定数据条件下,一个观测值与下一个观测值之间变化的概率分布;将这些分布的非参数估计值串联起来,就可以得到整个轨迹的模型。相应的分布预测涵盖了比将整个季节视为一个整体的替代方案更多的观测事件,并且在提取对公共卫生官员感兴趣的关键目标时,在多个评估指标上都有所提高。自适应加权集成使用可以根据情况变化的权重来集成多个预测方法(如增量密度)的结果。我们将跨预测方法选择最佳权重视为单独的估计任务,并描述了一种基于优化交叉验证性能的估计程序。我们考虑了数据生成过程的一些细节,包括数据修订和假期效应,这些都在构建这些预测方法和进行回顾性评估时都有涉及。增量密度方法和其他预测方法的自适应加权集成在单独应用时都显著优于下一个最佳集成组件,并且在结合使用时还实现了更好的交叉验证性能。我们基于这些贡献提交了实时预测,作为 CDC 2015/2016 年 FluSight 协作比较的一部分。在那个季节的 14 项提交中,该系统被 CDC 评为最准确的系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e66/6034894/c73f2e1296a0/pcbi.1006134.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验