Neuro-Biomorphic Engineering Lab, Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana, Israel.
The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
PLoS Comput Biol. 2022 Oct 27;18(10):e1010648. doi: 10.1371/journal.pcbi.1010648. eCollection 2022 Oct.
Biologically plausible computational modeling of visual perception has the potential to link high-level visual experiences to their underlying neurons' spiking dynamic. In this work, we propose a neuromorphic (brain-inspired) Spiking Neural Network (SNN)-driven model for the reconstruction of colorful images from retinal inputs. We compared our results to experimentally obtained V1 neuronal activity maps in a macaque monkey using voltage-sensitive dye imaging and used the model to demonstrate and critically explore color constancy, color assimilation, and ambiguous color perception. Our parametric implementation allows critical evaluation of visual phenomena in a single biologically plausible computational framework. It uses a parametrized combination of high and low pass image filtering and SNN-based filling-in Poisson processes to provide adequate color image perception while accounting for differences in individual perception.
对视觉感知进行符合生物学原理的计算建模,有可能将高层视觉体验与其底层神经元的放电动态联系起来。在这项工作中,我们提出了一种基于神经形态学(受大脑启发)的尖峰神经网络(SNN)驱动的模型,用于从视网膜输入重建彩色图像。我们将我们的结果与使用电压敏感染料成像在猕猴中获得的实验性 V1 神经元活动图谱进行了比较,并使用该模型演示和批判性地探索了颜色恒常性、颜色同化和模糊颜色感知。我们的参数实现允许在单个符合生物学原理的计算框架中对视觉现象进行批判性评估。它使用高通和低通图像滤波的参数化组合以及基于 SNN 的填充泊松过程来提供足够的彩色图像感知,同时考虑到个体感知的差异。