Suppr超能文献

人工智能与脊柱外科治疗算法。

Artificial intelligence and treatment algorithms in spine surgery.

机构信息

Service de chirurgie du rachis, hôpitaux universitaires de Strasbourg, université de Strasbourg, 1, avenue Molière, 67200 Strasbourg, France.

Service de chirurgie du rachis, hôpitaux universitaires de Strasbourg, université de Strasbourg, 1, avenue Molière, 67200 Strasbourg, France.

出版信息

Orthop Traumatol Surg Res. 2023 Feb;109(1S):103456. doi: 10.1016/j.otsr.2022.103456. Epub 2022 Oct 24.

Abstract

Artificial intelligence (AI) is a set of theories and techniques in which machines are used to simulate human intelligence with complex computer programs. The various machine learning (ML) methods are a subtype of AI. They originate from computer science and use algorithms established from analyzing a database to accomplish certain tasks. Among these methods are decision trees or random forests, support vector machines along with artificial neural networks. Convolutive neural networks were inspired from the visual cortex; they process combinations of information used in image or voice recognition. Deep learning (DL) groups together a set of ML methods and is useful for modeling complex relationships with a high degree of abstraction by using multiple layers of artificial neurons. ML techniques have a growing role in spine surgery. The main applications are the segmentation of intraoperative images for surgical navigation or robotics used for pedicle screw placement, the interpretation of images of intervertebral discs or full spine radiographs, which can be automated using ML algorithms. ML techniques can also be used as aids for surgical decision-making in complex fields, such as preoperative evaluation of adult spinal deformity. ML algorithms "learn" from large clinical databases. They make it possible to establish the intraoperative risk level and make a prognosis on how the postoperative functional scores will change over time as a function of the patient profile. These applications open a new path relative to standard statistical analyses. They make it possible to explore more complex relationships with multiple indirect interactions. In the future, AI algorithms could have a greater role in clinical research, evaluating clinical and surgical practices, and conducting health economics analyses.

摘要

人工智能(AI)是一套理论和技术,通过复杂的计算机程序使机器能够模拟人类智能。各种机器学习(ML)方法是 AI 的一个子类。它们源自计算机科学,使用从数据库分析中建立的算法来完成某些任务。这些方法包括决策树或随机森林、支持向量机以及人工神经网络。卷积神经网络受到视觉皮层的启发;它们处理用于图像或语音识别的信息组合。深度学习(DL)将一组 ML 方法组合在一起,通过使用多层人工神经元对具有高度抽象性的复杂关系进行建模,非常有用。ML 技术在脊柱外科中扮演着越来越重要的角色。主要应用包括手术导航的术中图像分割或用于椎弓根螺钉放置的机器人,以及使用 ML 算法实现椎间盘或全脊柱 X 光图像的自动解释。ML 技术还可以作为复杂领域手术决策的辅助手段,例如成人脊柱畸形的术前评估。ML 算法从大型临床数据库中“学习”。它们可以建立术中风险水平,并根据患者特征预测术后功能评分随时间的变化趋势。这些应用相对于标准统计分析开辟了一条新途径。它们可以探索具有多个间接相互作用的更复杂关系。未来,人工智能算法可能会在临床研究、评估临床和手术实践以及进行健康经济学分析方面发挥更大的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验