Suppr超能文献

模型训练周期对从废水中病毒载量估计 COVID-19 发病率的影响。

Model training periods impact estimation of COVID-19 incidence from wastewater viral loads.

机构信息

Department of Public Health Sciences, University of California Davis, Davis, CA 95616, United States.

Department of Public Health Sciences, University of California Davis, Davis, CA 95616, United States.

出版信息

Sci Total Environ. 2023 Feb 1;858(Pt 1):159680. doi: 10.1016/j.scitotenv.2022.159680. Epub 2022 Oct 26.

Abstract

Wastewater-based epidemiology (WBE) has been deployed broadly as an early warning tool for emerging COVID-19 outbreaks. WBE can inform targeted interventions and identify communities with high transmission, enabling quick and effective responses. As the wastewater (WW) becomes an increasingly important indicator for COVID-19 transmission, more robust methods and metrics are needed to guide public health decision-making. This research aimed to develop and implement a mathematical framework to infer incident cases of COVID-19 from SARS-CoV-2 levels measured in WW. We propose a classification scheme to assess the adequacy of model training periods based on clinical testing rates and assess the sensitivity of model predictions to training periods. A testing period is classified as adequate when the rate of change in testing is greater than the rate of change in cases. We present a Bayesian deconvolution and linear regression model to estimate COVID-19 cases from WW data. The effective reproductive number is estimated from reconstructed cases using WW. The proposed modeling framework was applied to three Northern California communities served by distinct WW treatment plants. The results showed that training periods with adequate testing are essential to provide accurate projections of COVID-19 incidence.

摘要

基于污水的流行病学(WBE)已广泛应用于新冠疫情爆发的早期预警工具。WBE 可以为有针对性的干预措施提供信息,并确定传播率较高的社区,从而实现快速有效的应对。随着污水(WW)成为新冠病毒传播的一个越来越重要的指标,需要更强大的方法和指标来指导公共卫生决策。本研究旨在开发和实施一个数学框架,从 WW 中测量的 SARS-CoV-2 水平推断新冠病例。我们提出了一种分类方案,根据临床检测率评估模型训练期的充分性,并评估模型预测对训练期的敏感性。当检测的变化率大于病例的变化率时,将测试期分类为充分。我们提出了一种贝叶斯解卷积和线性回归模型,从 WW 数据中估计新冠病例。使用 WW 从重建病例中估计有效繁殖数。该建模框架应用于三个由不同 WW 处理厂服务的北加州社区。结果表明,充分的检测期对于提供新冠发病率的准确预测至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdf5/9597566/31433ba18722/ga1_lrg.jpg

相似文献

1
Model training periods impact estimation of COVID-19 incidence from wastewater viral loads.
Sci Total Environ. 2023 Feb 1;858(Pt 1):159680. doi: 10.1016/j.scitotenv.2022.159680. Epub 2022 Oct 26.
2
Bayesian sequential approach to monitor COVID-19 variants through test positivity rate from wastewater.
mSystems. 2023 Aug 31;8(4):e0001823. doi: 10.1128/msystems.00018-23. Epub 2023 Jul 25.
3
Detection and quantification of SARS-CoV-2 RNA in wastewater influent in relation to reported COVID-19 incidence in Finland.
Water Res. 2022 May 15;215:118220. doi: 10.1016/j.watres.2022.118220. Epub 2022 Feb 23.
4
Application of neighborhood-scale wastewater-based epidemiology in low COVID-19 incidence situations.
Sci Total Environ. 2022 Dec 15;852:158448. doi: 10.1016/j.scitotenv.2022.158448. Epub 2022 Sep 2.
7
Wastewater-based epidemiology surveillance as an early warning system for SARS-CoV-2 in Indonesia.
PLoS One. 2024 Jul 18;19(7):e0307364. doi: 10.1371/journal.pone.0307364. eCollection 2024.

引用本文的文献

1
Innovations in Digital Health From a Global Perspective: Proceedings of PRC-HI 2024.
Health Care Sci. 2025 Jan 24;4(1):66-69. doi: 10.1002/hcs2.128. eCollection 2025 Feb.
2
Equity-centered adaptive sampling in sub-sewershed wastewater surveillance using census data.
Environ Sci (Camb). 2024 Oct 24;11(1):136-151. doi: 10.1039/d4ew00552j. eCollection 2024 Dec 19.
3
Comparative assessment of Nanotrap and polyethylene glycol-based virus concentration in wastewater samples.
FEMS Microbes. 2024 Mar 5;5:xtae007. doi: 10.1093/femsmc/xtae007. eCollection 2024.
4
Bayesian sequential approach to monitor COVID-19 variants through test positivity rate from wastewater.
mSystems. 2023 Aug 31;8(4):e0001823. doi: 10.1128/msystems.00018-23. Epub 2023 Jul 25.
8
Bayesian sequential approach to monitor COVID-19 variants through positivity rate from wastewater.
medRxiv. 2023 Jan 13:2023.01.10.23284365. doi: 10.1101/2023.01.10.23284365.

本文引用的文献

1
Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands.
Environ Sci Technol Lett. 2020 May 20;7(7):511-516. doi: 10.1021/acs.estlett.0c00357. eCollection 2020 Jul 14.
2
SARS-CoV-2 RNA Wastewater Settled Solids Surveillance Frequency and Impact on Predicted COVID-19 Incidence Using a Distributed Lag Model.
ACS ES T Water. 2022 Nov 11;2(11):2167-2174. doi: 10.1021/acsestwater.2c00074. Epub 2022 May 3.
3
Wastewater-Based Estimation of the Effective Reproductive Number of SARS-CoV-2.
Environ Health Perspect. 2022 May;130(5):57011. doi: 10.1289/EHP10050. Epub 2022 May 26.
5
Modeling the number of people infected with SARS-COV-2 from wastewater viral load in Northwest Spain.
Sci Total Environ. 2022 Mar 10;811:152334. doi: 10.1016/j.scitotenv.2021.152334. Epub 2021 Dec 16.
6
Analysis of the initial lot of the CDC 2019-Novel Coronavirus (2019-nCoV) real-time RT-PCR diagnostic panel.
PLoS One. 2021 Dec 15;16(12):e0260487. doi: 10.1371/journal.pone.0260487. eCollection 2021.
7
COVID-19 wastewater epidemiology: a model to estimate infected populations.
Lancet Planet Health. 2021 Dec;5(12):e874-e881. doi: 10.1016/S2542-5196(21)00230-8.
8
A wastewater-based epidemiology tool for COVID-19 surveillance in Portugal.
Sci Total Environ. 2022 Jan 15;804:150264. doi: 10.1016/j.scitotenv.2021.150264. Epub 2021 Sep 11.
9
Wastewater surveillance to infer COVID-19 transmission: A systematic review.
Sci Total Environ. 2022 Jan 15;804:150060. doi: 10.1016/j.scitotenv.2021.150060. Epub 2021 Sep 8.
10
SARS-CoV-2 wastewater surveillance data can predict hospitalizations and ICU admissions.
Sci Total Environ. 2022 Jan 15;804:150151. doi: 10.1016/j.scitotenv.2021.150151. Epub 2021 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验