Section of Patient-Centered Analytics, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA.
Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, USA.
Sci Rep. 2022 Dec 8;12(1):21269. doi: 10.1038/s41598-022-22614-1.
Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using patient-reported outcomes (PRO) data. We collected data from a single academic cancer institution in the United States. Women completed biopsychosocial PRO measures every 90 days. We randomly partitioned our dataset into training and testing samples. We used synthetic minority oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine learning algorithms and combined their classifications on the testing dataset into an unweighted voting ensemble. We assessed each algorithm's accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who completed 1319 PRO assessments. The final voting ensemble produced state-of-the-art results on the task of predicting 180-day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO data offer encouraging performance in predicting whether a woman with ovarian cancer will die within 180 days. This model could be used to drive data-driven end-of-life care and address current shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM information to make substantial contributions to oncology prediction modeling. This model could inform clinical decision-making Future research is needed to validate these findings in a larger, more diverse sample.
与国家指南相反,卵巢癌女性在生命末期经常接受治疗,这可能是由于准确估计预后的难度。我们使用机器学习算法通过使用患者报告的结果 (PRO) 数据预测卵巢癌女性 180 天死亡率来指导预后。我们从美国的一家学术癌症机构收集数据。女性每 90 天完成一次生物心理社会 PRO 测量。我们随机将数据集分为训练和测试样本。我们使用合成少数过采样来减少训练数据集的类别不平衡。我们将训练数据拟合到六个机器学习算法中,并将它们在测试数据集上的分类组合成一个无权重投票集成。我们使用测试数据评估每个算法的准确性、敏感性、特异性和接收者操作特征曲线 (AUROC) 下的面积。我们招募了 245 名完成 1319 次 PRO 评估的患者。最终投票集成在预测卵巢癌患者 180 天死亡率的任务上取得了最先进的结果(准确率=0.79,敏感性=0.71,特异性=0.80,AUROC=0.76)。该算法正确识别了测试数据集中 35 名在评估后 180 天内死亡的女性中的 25 名。使用 PRO 数据训练的机器学习算法在预测卵巢癌女性是否会在 180 天内死亡方面表现出令人鼓舞的性能。该模型可用于驱动数据驱动的临终关怀,并解决当前护理提供方面的不足。我们的模型展示了生物心理社会 PROM 信息在肿瘤学预测建模方面做出重大贡献的潜力。该模型可以为临床决策提供信息,未来需要在更大、更多样化的样本中验证这些发现。