Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland.
Comparative Oncology Program, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland.
Am J Pathol. 2023 Jan;193(1):60-72. doi: 10.1016/j.ajpath.2022.09.009. Epub 2022 Oct 27.
Osteosarcomas (OSs) are aggressive bone tumors with many divergent histologic patterns. During pathology review, OSs are subtyped based on the predominant histologic pattern; however, tumors often demonstrate multiple patterns. This high tumor heterogeneity coupled with scarcity of samples compared with other tumor types render histology-based prognosis of OSs challenging. To combat lower case numbers in humans, dogs with spontaneous OSs have been suggested as a model species. Herein, a convolutional neural network was adversarially trained to classify distinct histologic patterns of OS in humans using mostly canine OS data during training. Adversarial training improved domain adaption of a histologic subtype classifier from canines to humans, achieving an average multiclass F1 score of 0.77 (95% CI, 0.74-0.79) and 0.80 (95% CI, 0.78-0.81) when compared with the ground truth in canines and humans, respectively. Finally, this trained model, when used to characterize the histologic landscape of 306 canine OSs, uncovered distinct clusters with markedly different clinical responses to standard-of-care therapy.
骨肉瘤(OSs)是一种侵袭性骨肿瘤,具有许多不同的组织学形态。在病理检查中,根据主要的组织学形态对 OS 进行亚型分类;然而,肿瘤通常表现出多种形态。这种高肿瘤异质性,加上与其他肿瘤类型相比,样本数量较少,使得基于组织学的 OS 预后变得具有挑战性。为了克服人类样本数量较少的问题,人们提出了自发性骨肉瘤的犬类作为模型物种。在此,通过对抗性训练,使用训练过程中的大多数犬骨肉瘤数据,对人类骨肉瘤的不同组织学形态进行分类。对抗性训练提高了从犬科到人类的组织学亚型分类器的域自适应能力,与犬科和人类的真实数据相比,平均多类 F1 得分分别为 0.77(95%CI,0.74-0.79)和 0.80(95%CI,0.78-0.81)。最后,该训练模型用于描述 306 例犬骨肉瘤的组织学图谱,发现了具有明显不同临床反应的显著不同的簇,对标准治疗反应不同。