Suppr超能文献

用于处理多阈值图像问题并应用于COVID-19 X光图像的增强乌鸦搜索算法。

Boosted crow search algorithm for handling multi-threshold image problems with application to X-ray images of COVID-19.

作者信息

Zhao Songwei, Wang Pengjun, Heidari Ali Asghar, Zhao Xuehua, Chen Huiling

机构信息

College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang 325035, China.

College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China.

出版信息

Expert Syst Appl. 2023 Mar 1;213:119095. doi: 10.1016/j.eswa.2022.119095. Epub 2022 Oct 22.

Abstract

COVID-19 is pervasive and threatens the safety of people around the world. Therefore, now, a method is needed to diagnose COVID-19 accurately. The identification of COVID-19 by X-ray images is a common method. The target area is extracted from the X-ray images by image segmentation to improve classification efficiency and help doctors make a diagnosis. In this paper, we propose an improved crow search algorithm (CSA) based on variable neighborhood descent (VND) and information exchange mutation (IEM) strategies, called VMCSA. The original CSA quickly falls into the local optimum, and the possibility of finding the best solution is significantly reduced. Therefore, to help the algorithm avoid falling into local optimality and improve the global search capability of the algorithm, we introduce VND and IEM into CSA. Comparative experiments are conducted at CEC2014 and CEC'21 to demonstrate the better performance of the proposed algorithm in optimization. We also apply the proposed algorithm to multi-level thresholding image segmentation using Renyi's entropy as the objective function to find the optimal threshold, where we construct 2-D histograms with grayscale images and non-local mean images and maximize the Renyi's entropy on top of the 2-D histogram. The proposed segmentation method is evaluated on X-ray images of COVID-19 and compared with some algorithms. VMCSA has a significant advantage in segmentation results and obtains better robustness than other algorithms. The available extra info can be found at https://github.com/1234zsw/VMCSA.

摘要

新型冠状病毒肺炎(COVID-19)具有普遍性,威胁着全球人民的安全。因此,现在需要一种方法来准确诊断COVID-19。通过X射线图像识别COVID-19是一种常用方法。通过图像分割从X射线图像中提取目标区域,以提高分类效率并帮助医生进行诊断。在本文中,我们提出了一种基于可变邻域下降(VND)和信息交换变异(IEM)策略的改进乌鸦搜索算法(CSA),称为VMCSA。原始的CSA很快陷入局部最优,找到最佳解决方案的可能性显著降低。因此,为了帮助该算法避免陷入局部最优并提高算法的全局搜索能力,我们将VND和IEM引入CSA。在CEC2014和CEC'21上进行了对比实验,以证明所提算法在优化方面具有更好的性能。我们还将所提算法应用于以Renyi熵为目标函数的多级阈值图像分割,以找到最优阈值,在此过程中,我们用灰度图像和非局部均值图像构建二维直方图,并在二维直方图上最大化Renyi熵。所提分割方法在COVID-19的X射线图像上进行了评估,并与一些算法进行了比较。VMCSA在分割结果方面具有显著优势,并且比其他算法具有更好的鲁棒性。可在https://github.com/1234zsw/VMCSA上找到可用的额外信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验