Suppr超能文献

用于交互式医学图像分割的体积记忆网络。

Volumetric memory network for interactive medical image segmentation.

作者信息

Zhou Tianfei, Li Liulei, Bredell Gustav, Li Jianwu, Unkelbach Jan, Konukoglu Ender

机构信息

Computer Vision Laboratory, ETH Zurich, Switzerland.

School of Computer Science and Technology, Beijing Institute of Technology, China.

出版信息

Med Image Anal. 2023 Jan;83:102599. doi: 10.1016/j.media.2022.102599. Epub 2022 Sep 6.

Abstract

Despite recent progress of automatic medical image segmentation techniques, fully automatic results usually fail to meet clinically acceptable accuracy, thus typically require further refinement. To this end, we propose a novel Volumetric Memory Network, dubbed as VMN, to enable segmentation of 3D medical images in an interactive manner. Provided by user hints on an arbitrary slice, a 2D interaction network is firstly employed to produce an initial 2D segmentation for the chosen slice. Then, the VMN propagates the initial segmentation mask bidirectionally to all slices of the entire volume. Subsequent refinement based on additional user guidance on other slices can be incorporated in the same manner. To facilitate smooth human-in-the-loop segmentation, a quality assessment module is introduced to suggest the next slice for interaction based on the segmentation quality of each slice produced in the previous round. Our VMN demonstrates two distinctive features: First, the memory-augmented network design offers our model the ability to quickly encode past segmentation information, which will be retrieved later for the segmentation of other slices; Second, the quality assessment module enables the model to directly estimate the quality of each segmentation prediction, which allows for an active learning paradigm where users preferentially label the lowest-quality slice for multi-round refinement. The proposed network leads to a robust interactive segmentation engine, which can generalize well to various types of user annotations (e.g., scribble, bounding box, extreme clicking). Extensive experiments have been conducted on three public medical image segmentation datasets (i.e., MSD, KiTS, CVC-ClinicDB), and the results clearly confirm the superiority of our approach in comparison with state-of-the-art segmentation models. The code is made publicly available at https://github.com/0liliulei/Mem3D.

摘要

尽管自动医学图像分割技术最近取得了进展,但全自动结果通常无法达到临床可接受的精度,因此通常需要进一步细化。为此,我们提出了一种新颖的体积记忆网络,称为VMN,以实现以交互式方式分割3D医学图像。根据用户在任意切片上给出的提示,首先使用二维交互网络为所选切片生成初始二维分割。然后,VMN将初始分割掩码双向传播到整个体积的所有切片。基于对其他切片的额外用户指导的后续细化可以以相同的方式纳入。为了促进流畅的人工参与分割,引入了一个质量评估模块,根据上一轮生成的每个切片的分割质量,建议下一个进行交互的切片。我们的VMN具有两个显著特点:第一,记忆增强网络设计使我们的模型能够快速编码过去的分割信息,这些信息稍后将被检索用于其他切片的分割;第二,质量评估模块使模型能够直接估计每个分割预测的质量,这允许采用主动学习范式,即用户优先标记质量最低的切片进行多轮细化。所提出的网络产生了一个强大的交互式分割引擎,它可以很好地推广到各种类型的用户注释(例如,涂鸦、边界框、极端点击)。我们在三个公共医学图像分割数据集(即MSD、KiTS、CVC-ClinicDB)上进行了广泛的实验,结果清楚地证实了我们的方法相对于现有分割模型的优越性。代码可在https://github.com/0liliulei/Mem3D上公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验