Zhang Louis
Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78713-8058, USA.
Vis Comput Ind Biomed Art. 2022 Nov 5;5(1):26. doi: 10.1186/s42492-022-00122-3.
As one of the most widely used assays in biological research, an enumeration of the bacterial cell colonies is an important but time-consuming and labor-intensive process. To speed up the colony counting, a machine learning method is presented for counting the colony forming units (CFUs), which is referred to as CFUCounter. This cell-counting program processes digital images and segments bacterial colonies. The algorithm combines unsupervised machine learning, iterative adaptive thresholding, and local-minima-based watershed segmentation to enable an accurate and robust cell counting. Compared to a manual counting method, CFUCounter supports color-based CFU classification, allows plates containing heterologous colonies to be counted individually, and demonstrates overall performance (slope 0.996, SD 0.013, 95%CI: 0.97-1.02, p value < 1e-11, r = 0.999) indistinguishable from the gold standard of point-and-click counting. This CFUCounter application is open-source and easy to use as a unique addition to the arsenal of colony-counting tools.
作为生物学研究中使用最广泛的检测方法之一,细菌细胞集落计数是一个重要但耗时且费力的过程。为了加快集落计数速度,提出了一种用于计数集落形成单位(CFU)的机器学习方法,即CFUCounter。这个细胞计数程序处理数字图像并分割细菌集落。该算法结合了无监督机器学习、迭代自适应阈值处理和基于局部最小值的分水岭分割,以实现准确且稳健的细胞计数。与手动计数方法相比,CFUCounter支持基于颜色的CFU分类,允许对包含异源集落的平板进行单独计数,并且其整体性能(斜率0.996,标准差0.013,95%置信区间:0.97 - 1.02,p值<1e - 11,r = 0.999)与点击计数的金标准难以区分。这个CFUCounter应用程序是开源的,并且作为集落计数工具库中的独特补充,易于使用。