Suppr超能文献

用于细胞集落形成单位计数的机器学习

Machine learning for enumeration of cell colony forming units.

作者信息

Zhang Louis

机构信息

Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78713-8058, USA.

出版信息

Vis Comput Ind Biomed Art. 2022 Nov 5;5(1):26. doi: 10.1186/s42492-022-00122-3.

Abstract

As one of the most widely used assays in biological research, an enumeration of the bacterial cell colonies is an important but time-consuming and labor-intensive process. To speed up the colony counting, a machine learning method is presented for counting the colony forming units (CFUs), which is referred to as CFUCounter. This cell-counting program processes digital images and segments bacterial colonies. The algorithm combines unsupervised machine learning, iterative adaptive thresholding, and local-minima-based watershed segmentation to enable an accurate and robust cell counting. Compared to a manual counting method, CFUCounter supports color-based CFU classification, allows plates containing heterologous colonies to be counted individually, and demonstrates overall performance (slope 0.996, SD 0.013, 95%CI: 0.97-1.02, p value < 1e-11, r = 0.999) indistinguishable from the gold standard of point-and-click counting. This CFUCounter application is open-source and easy to use as a unique addition to the arsenal of colony-counting tools.

摘要

作为生物学研究中使用最广泛的检测方法之一,细菌细胞集落计数是一个重要但耗时且费力的过程。为了加快集落计数速度,提出了一种用于计数集落形成单位(CFU)的机器学习方法,即CFUCounter。这个细胞计数程序处理数字图像并分割细菌集落。该算法结合了无监督机器学习、迭代自适应阈值处理和基于局部最小值的分水岭分割,以实现准确且稳健的细胞计数。与手动计数方法相比,CFUCounter支持基于颜色的CFU分类,允许对包含异源集落的平板进行单独计数,并且其整体性能(斜率0.996,标准差0.013,95%置信区间:0.97 - 1.02,p值<1e - 11,r = 0.999)与点击计数的金标准难以区分。这个CFUCounter应用程序是开源的,并且作为集落计数工具库中的独特补充,易于使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/670d/9637067/b7a3874720b6/42492_2022_122_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验